CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK B.Sc Chemistry

Those who have joined from the Academic year 2023-24 onwards

- > Students will possess basic subject knowledge required for higher studies, professional andapplied courses
- > Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
- > Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and reativity.
- > Students will employ appropriate digital tools and techniques necessary in analysing data and reative design.
- > Students will gain competence to pursue higher learning, research and careers or will be able toopt for entrepreneurship
- > Students will interact meaningfully with others displaying leadership and coordination inexecuting projects.
- > Students will demonstrate responsibility as citizens committed to national developmentthrough community outreach, wellness of self and a sustainable environment.

PROGRAMME SPECIFIC OUTCOMES

- PSO1: Students acquire in-depth knowledge of the fundamental concepts in all disciplines of chemistry.
- PSO2: Students can disseminate the basics of chemistry and advanced topics and analyticalskills in organic, inorganic and physical chemistry.
- PSO3: Students will be able develop creativity in academics and research.
- PSO4: Students will be able apply digital tools to collect, analyse and interpret data and presentscientific findings.
- PSO5: gain competence to pursue higher education and career opportunities in chemistry and allied fields.
- PSO6: exhibit leadership qualities to work individually and within a team in organizing curricular, co-curricular and extracurricular activities.
- PSO7: apply the concepts of chemistry to solve problems in the community, entrepreneurial andresearch pursuits.
- PSO8: exhibit competence in educational, industrial and research pursuits that contributetowards the holistic development of self and community.

Credit Distribution for UG Programme in Chemistry

			טואנע	ribution			gran					
Sem I	Cre dit	Sem II	Cre dit	Sem III	Cre dit	Sem IV	Cre dit	Sem V	Cre dit	Sem VI	Cre dit	
1.1. Language	3	2.1. Language	3	3.1. Language	3	4.1. Languag e	3	5.1 Core Course – \CC IX	4	6.1 Core Course – CC XIII	4	
1.2 English	3	2.2 English	3	3.2 English	3	4.2 English	3	5.2 Core Course – CC X	4	6.2 Core Course – CC XIV	4	
1.3 Core Course – CC I	4	2.3 Core Course – CC III	4	3.3 Core Course – CC V	4	4.3 Core Course – CC VII Core Industry Module	4	5. 3.Core Course CC -XI	4	6.3 Core Course – CC XV	4	
1.4 Core Course – CC II	4	2.4 Core Course – CC IV	4	3.4 Core Course – CC VI	4	4.4 Core Course – CC VIII	4	5. 3.Core Course – / Project with viva- voce CC -XII	4	6.4 Elective -VII Generic/ Discipli ne Specific	3	
1.5 Elective I Generic/ Discipline Specific	3	2.5 Elective II Generic/ Discipline Specific	3	3.5 Elective III Generic/ Discipline Specific	3	4.5 Elective IV Generic/ Disciplin e Specific	3	5.4 Elective V Generic/ Discipli ne Specific	3	6.5 Elective VIII Generic/ Discipli ne Specific	3	
1.6 Skill Enhancem ent Course SEC-1 (NME)	2	2.6 Skill Enhancem ent Course SEC-2 (NME)	2	3.6 Skill Enhancem ent Course SEC-4, (Entrepren eurial Skill)	1	4.6 Skill Enhance ment Course SEC-6	2	5.5 Elective VI Generic/ Discipli ne Specific	3	6.6 Extensio n Activity	1	
		2.7 Skill Enhancem ent Course –SEC-3	2	3.7 Skill Enhancem ent Course SEC-5	2	4.7 Skill Enhance ment Course SEC-7	2	5.6 Value Educatio n	2	6.7 Professi onal Compete ncy Skill	2	
1.7Ability Enhancem ent Compulso ry Course (AECC) Soft Skill-1	2	2.8 Ability Enhancem ent Compulso ry Course (AECC) Soft Skill- 2	2	3.7 Ability Enhancem ent Compulsor y Course (AECC) Soft Skill-3	2	4.7 7Ability Enhance ment Compuls ory Course (AECC) Soft Skill-4	2	5.5 Summer Internshi p /Industri al Training	2			
1.8 Skill Enhancem ent - (Foundatio n Course)	2			3.8 E.V.S	-	4.8 E.V.S	2					
, ,	23		23		22		25		26		21	
				To	tal Cr	edit Points					140	

CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK UG Chemistry Semester I

Part	Courses	Subject	Code	Cr.	Hrs
I	Lang. – I	பொதுத்தமிழ் - I	230103101	3	6
II	Lang II	General English	231003101	3	4
	CC – 1	General Chemistry I	232203101	5	5
	CC – 2	Quantitative Inorganic Estimation and	232203102	2	3
III		Preparation - Lab		2	3
	EC – I	Allied Mathematics – I / Animal	232003121/		11. 5 (4
	[Any One]	Diversity	232303121	4	*6/4
			*6hr for Maths / 4	hr for Zo	ology(I
			& II Ser		
	EC I Lab	Animal Diversity, Genetics, Cell Biology	_	_	2
		and Biochemistry Lab			
IV	SEC –I(NME)	Food Chemistry	234603122	2	2
IV	FC	Basic Principles of Chemistry	234403122	2	2
	AECC - 1	Soft Skill - I	236003101	2	2
	Total			23	30
		SEMESTER II	220102201	-	
I	LangI	பொதுத்தமிழ் - II	230103201	3	6
II	LangII	General English	231003201	3	4
	CC – 3	General Chemistry – II	232203201	5	5
	CC - 4	Qualitative Organic Analysis and	232203202	2	3
III		Preparation of Organic Compounds - Lab		_	_
	EC – II	Allie Mathematics – II / Genetics, Cell	232003221/	2	6/4
	Theory	biology and Bio Chemistry	232303221	20.5.5	7 1
	<u> </u>	T	*4 Cr for Maths /	2Cr for 2	Loology
	EC – II Lab	Animal Diversity, Genetics, Cell Biology and Biochemistry Lab	232303222	2	2
IV	SEC –II	Dairy Chemistry	234603222	2	2
1,	(NME)				
	SEC - III	Cosmetics and Personal Grooming	234403222	2	2
	AECC –II	Soft Skill - II	236003201	2	2
				23	30
		SEMESTER III	220102201	2	
I	LangI	பொதுத்தமிழ் - III	230103301	3	6
II	LangII	General English	231003301	3	4
	CC – 5	General Chemistry III	232203301	5	5
III	CC - 6	Qualitative Inorganic Analysis - Lab	232203302	2	3
	EC –3	Allied – Physics Paper	232103321	4	6
	SEC –IV	Entrepreneurial Skills in Chemistry	234403322	1	1
IV	SEC – V	Pesticide Chemistry	238203322	2	2
	AECC – III	Soft Skill -III	236003301	2	2
	EVS	Environmental Studies	234103301	1	1
				23	30

Part	Courses		Code	Cr.	Hrs								
SEMESTER IV													
I	Lang. – I	பொதுத்தமிழ் - IV	230103101	3	6								
II	Lang II	General English	231003101	3	4								
	CC – 7	General Chemistry - IV	232203401	4	4								
	CC - 8	Physical Chemistry Practical - I	232203402	3	3								
III	EC – IV	Allied – Physics Paper	232103421	4	6								
IV	SEC –VI	Instrumental Methods of Chemical Analysis	234403422	2	2								
IV	SEC –VII	Forensic Science	238203422	2	2								
1 V	AECC- IV	Soft Skill – IV	236003401	2	2								
	EVS	Environmental Studies	234103401	1	1								
	Total			24	30								
		SEMESTER V											
	CC – 9	Organic Chemistry – I	232203501	4	5								
	CC - 10	Inorganic Chemistry – I	232203502	4	5								
III	CC - 11	Physical Chemistry - I	232203503	4	5								
1111	Core 12	Project with Viva voce	232203504	4	5								
	EC - V	Biochemistry	232203505	4	5								
	EC – VI	Industrial Chemistry	232203506	3	4								
		Value Education	234303501	1	1								
IV		Internship/Industrial Training (carried out in II year summer vacation) 30 hrs	232203507	2									
				25	30								
		SEMESTER VI											
	CC – 13	Organic Chemistry – II	232203601	4	5								
	CC – 14	Inorganic Chemistry – II	232203602	3	4								
III	CC – 15 T	Physical Chemistry – II	232203603	4	5								
1111	CC – 15 P	Physical Chemistry Practical – II	232203604	2	3								
	EC -7	Fundamentals of Spectroscopy	232203605	3	4								
	EC - 8	Nano Science	232203606	2	4								
IV	Processional competency skill enhancement course		232203607	2	4								
		Value Education	234303601	1	1								
V		Extension Activity (outside college hrs)	232203608	1									
				22	30								

	ALLIED - CHEMISTRY FOR PHYSICS											
Sem	Title of the Paper	SUB CODE	Hrs.	Cr.	Generic/Discipline Specifit							
III		232203321			EC 3 - Theory							
III	Chemistry Practical for Physical and Biological Science	232203322			EC 3 - Practical							
IV		232203421			EC 4 - Theory							
IV	Chemistry Practical for Physical and Biological Chemistry	232203422			EC 4 - Practical							

	ALLIED - CHEMISTRY FOR ZOOLOGY												
Sem	Title of the Paper	SUB CODE	Hrs.	Cr.	Generic/Discipline Specifit								
I	Chemistry for Biological Science I	232203121	4	3	EC 1 - Theory								
I	Chemistry Practical for Physical and Biological Science	232203122	2	1	EC 1 - Practical								
II	Chemistry for Biological Science – II	232203221	4	3	EC 2 - Theory								
II	Chemistry Practical for Physical and Biological Science	232203222	2	1	EC 2 - Practical								

Title of t	he Course	General	Chemistr	y - I								
Part		III										
Category	y Core 1	Year Semester	I r I	Credits	5		ourse ode	23:	2203101			
	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total			
per week		4	1		5	25	75		100			
			Learning	g Objective	S	1	1	I				
	various atomic m	nodels and	atomic st	ructure								
	wave particle dua	ality of ma	atter									
	periodic table, periodicity in properties and its application in explaining the behaviour											
	nature of chemic	al bonding	g, and									
	fundamental con	cepts of o	rganic che	emistry								
									No. of			
UNIT			Deta						riods for he Unit			
I	Atomic structure History of atom Atomic number, quantum theory Interpretation of nature of Matt experiment Heise Atoms and ion principle; Numerical problem	5 1 f	15									
II	Numerical problems involving the core concepts. Introduction to Quantum mechanics Classical mechanics, Wave mechanical model of atom, distinction between a Bohr orbit and orbital; Postulates of quantum mechanics; probability interpretation of wavefunctions, Formulation of Schrodinger wave equation - Probability and electron density-visualizing the orbitals -Probability density and significance of Ψ and Ψ². Modern Periodic Table Cause of periodicity; Features of the periodic table; classification of elements - Periodic trends for atomic size- Atomic radii, Ionic, crystal and Covalent radii; ionization energy, electron affinity, electronegativity- electronegativity scales, applications of electronegativity.											
III	 Problems involving the core concepts Ionic bond Lewis dot structure of ionic compounds; properties of ionic compounds; Energy involved in ionic compounds; Born Haber cycle – lattice energies, Madelung constant; relative effect of lattice energy and solvation energy; Ion polarization – polarising power and polarizability; Fajans' rules - effects of polarisation on properties of compounds; problems involving the core concepts. Covalent bond Shapes of orbitals, overlap of orbitals – σ and Π bonds; directed valency – hybridization; VSEPR theory - shapes of molecules of the type AB₂, AB₃, AB₄, AB₅, AB₆ and AB₇ Partial ionic character of covalent bond-dipole moment, application to molecules of the type A₂, AB, AB₂, AB₃, AB₄; percentage ionic character-numerical problems based on calculation of percentage ionic character. 								15			
IV	VB theory – appresonance structulimitations of nonbonding orbit	olication to ares of som VBT; M	hydrogen le inorgani IO theor	molecule; of species – bond	CO ₂ , NC ling, ar	O_2 , CO_2	$^{3^{2-}}$ NO $_3^-$ ing and	; l	15			

	N ₂ , NO, HF, CO; magnetic characteristics, comparison of VB and MO theories. Coordinate bond: Definition, Formation of BF ₃ , NH ₃ , NH ₄ ⁺ , H ₃ O ⁺	
	properties Metallic bond-electron sea model, VB model; Band theory-mechanism of conduction in solids; conductors, insulator, semiconductor –	
	types, applicationsof semiconductors	
	Weak Chemical Forces - Vander Waals forces, ion-dipole forces, dipole-dipole	
	interactions, induced dipole interactions, Instantaneous dipole-induced dipole	
	interactions. Repulsive forces; Hydrogen bonding – Types, special properties	
	of water, ice, stability of DNA; Effects of chemical force, melting and boiling	
	points.	
\mathbf{V}	UNIT-V:	
	Basic concepts in Organic Chemistry and Electronic effects	
	Types of bond cleavage – heterolytic and homolytic; arrow pushing in organic reactions; reagents and substrates; types of reagents - electrophiles, nucleophiles, free radicals; reaction intermediates – carbanions, carbocations, carbenes, arynes and nitrynes. Inductive effect - reactivity of alkyl halides, acidity of halo acids, basicity of amines; inductomeric and electromeric effects. Resonance – resonance energy, conditions for resonance - acidity of phenols, basicity of aromatic amines, stability of carbonium ions, carbanions and freeradicals, reactivity of vinyl chloride, dipole moment of vinyl chloride andnitrobenzene, bond lengths; steric inhibition to resonance.	15
	Hyperconjugation - stability of alkenes, bond length, orienting effect of methylgroup, dipole moment of aldehydes and nitromethane	
	Types of organic reactions- addition, substitution, elimination and rearrangements	

	Course Outcomes								
Course On completion of this course, students will;									
Outcomes									
CO1	explain the atomic structure								
CO2	classify the elements in the periodic table								
CO3	apply the theories of atomic structure								
CO4	evaluate the relationship existing between electronic configuration								
CO5	construct MO diagrams								

	Text Books (Latest Editions)
1	Madan, R. D. and Sathya Prakash, <i>Modern Inorganic Chemistry</i> , 2 nd ed.; S.Chand and
	Company: New Delhi, 2003.
2	Rao, C.N. R. University General Chemistry, Macmillan Publication: NewDelhi, 2000.
3	Puri, B. R. and Sharma, L. R. <i>Principles of Physical Chemistry</i> , 38 th ed.;Vishal Publishing Company: Jalandhar, 2002.
4	Bruce, P. Y. and PrasadK. J. R. <i>Essential Organic Chemistry</i> , PearsonEducation: New Delhi, 2008.
5	Dash UN, Dharmarha OP, Soni P.L. Textbook of Physical Chemistry, Sultan Chand & Sons: New Delhi,2016
	References Books
	(Latest editions, and the style as given below must be strictly adhered to)
1	Maron, S. H. and Prutton C. P. <i>Principles of Physical Chemistry</i> , 4 th ed.; The Macmillan Company: Newyork, 1972.
2	Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS WilliamHeinemann: London,1991.
3	Gurudeep Raj, Advanced Inorganic Chemistry, 26thed.; Goel PublishingHouse: Meerut, 2001.
4	Atkins, P.W. & Paula, J. <i>Physical Chemistry</i> , 10th ed.; Oxford UniversityPress:New York, 2014.
5	Huheey, J. E. <i>Inorganic Chemistry: Principles of Structure and Reactivity</i> , 4 th ed .; Addison, Wesley Publishing Company: India,1993.

	Web Resources							
1	https://onlinecourses.nptel.ac.in							
2	http://www.mikeblaber.org/oldwine/chm1045/notes_m.htm							
3	http://www.ias.ac.in/initiat/sci_ed/resources/chemistry/Inorganic.html							
4	https://swayam.gov.in/course/64-atomic-structure-and-chemical-bonding							
5	https://www.chemtube3d.com/							

Mapping with Programme Outcomes:

				11 0	í —	-				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

3 – Strong, 2 – Medium , 1 - Low Mapping with Programme Specific Outcomes:

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of	the Course	Quantita	tive Inor	ganic Estin	nation a	nd P	reparatio	n - Lab		
Part		III					_			
Categor	y Core – 2	Year	I	Credits	2		Course	2222021	102	
		Semester	I				Code	2322031	102	
Instruct per weel	ional Hours	Lecture	Tutorial	Lab Practice	Total	CIA		al Tot	tal	
per week		-	-	3	3	25	75	10	0	
			Learnin	g Objective	S					
	• laboratory s	safety								
	handling gl	asswares								
	Quantitative		1							
	 preparation 			unde						
	preparation	No. o	f							
UNIT			Deta	ils				Periods	for	
								the Ur	<u>iit</u>	
I	Chemical Labor	·	·							
	Introduction - in	-	•							
	laboratory hazar	*								
	hazards, prepare	_					-			
	MSDS; importa					-				
	chemical hoods uses of fire extin									
	and safe disposal	•	icinonsu a	mon or ope	ration, (CHCIII	icai wasie			
	-	paratus	Used	in Quar	ntitative	E	stimation			
	(Volumetric)	paratus	Oscu	iii Quai	ıııaııvc		Stillation			
	Description and use of burette, pipette, standard flask, measuring									
	cylinder, conical flask, beaker, funnel, dropper, clamp, stand, wash									
	bottle, watch gla									
	Principle of Qu									
	Equivalent weig	tht of an a	icid, base	e, salt, red	ucing ag	gent,	oxidizing			
	agent; concept									
	secondary standa									
	base, redox, co						,			
	indicators – t	• •	•		edox, r	netal	ion and			
	adsorption indica									
II	Quantitative Es			•		•				
	Preparation of st		ition, dili	ition from s	stock sol	lution				
	Permanganome	•	oloto no	ina standa	rd form	2110	ommonium			
	Estimation of sulphate	SOUTUITE OX	arate us	mg standa	iu ieif	Jus i	ammomul	ш		
	Dichrometry									
	Estimation of	ferric alı	ım usin	g standard	dichro	mate	(externa	ıl		
	indicator) Estir			•						
	(internal indicat									
	Iodometry	•								
	Estimation of c	opper in co	pper sulp	hate using	standard	l dich	romate			
	Argentimetry			-						
	Estimation of ch	loride in ba	rium chl	oride using						
III	Unit III									
	Complexometr	•								
	Estimation of h	ardness of	water usi	ng EDTA						
	Estimations									
	Estimation of in									
	tabletsEstimation	on of								
	ascorbic acid.	Э.Т								
	Preparation of	Inorganic	;							

cor	npounds-Potash alum	
Tetr	aammine copper (II) sulphateHexamminecobalt (III) chloride	
Moł	nr's Salt	

Course Outcomes								
Course	On completion of this course, students will;							
Outcomes								
CO1	explain the basic principles involved in titrimetric analysis and inorganic preparations.							
CO2	compare the methodologies of different titrimetric analysis.							
CO3	calculate the concentrations of unknown solutions in different ways and develop the skillto estimate the amount of a substance present in a given solution.							
CO4	assess the yield of different inorganic preparations and identify the end point of various titrations.							

Text Books (Latest Editions)								
Venkateswaran, V.; Veeraswamy, R.; Kulandivelu, A.R. Basic Principles of Practical								
Chemistry, 2 nd ed.; Sultan Chand &Sons: New Delhi, 1997.								
Nad, A. K.; Mahapatra, B.; Ghoshal, A.; An advanced course in Practical Chemistry,								
3 rd ed.; New Central Book Agency: Kolkata, 2007.								
References Books								
(Latest editions, and the style as given below must be strictly adhered to)								
Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M.; Sivasankar, B.;								
Vogel's Textbook of Quantitative Chemical Analysis, 6th ed.;								
Pearson Education Ltd: New Delhi, 2000.								
Web Resources								
http://www.federica.unina.it/agraria/analytical-chemistry/volumetric- analysis								
https://chemdictionary.org/titration-indicator/								

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M

3 – Strong, 2 – Medium, 1 - Low

Mapping with Programme Specific Outcomes:

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	3	3	3	3				
CO2	3	3	3	3	3				
CO3	3	3	3	3	3				
CO4	3	3	3	3	3				
CO5	12	12	12	12	12				
Weightage	3.0	3.0	3.0	3.0	3.0				
Weighted percentage of Course Contribution to Pos	3	3	3	3	3				

Level of Correlation between PSO's and CO'

Title of t	he Course	Food Che	emistry							
Part		IV								
Catagory	SEC – 1:	Year	I	Credits	2	C	ourse	234603122		
Category	NME	Semester	· I			C	ode	234003122		
	onal Hours	Lecture	Tutorial	Lab	Total	CIA	Extern	al Total		
per week		2		Practice	2	25	75	100		
			I garning	g Objective		23	13	100		
	• Types of foo		Learming	z Objective	7 3					
	• Types of foo									
	Food adulteration and poisonsFood additives and preservation									
	Food additiv	es and prese	ervation					NI C		
		No. of Periods for								
UNIT	NIT Details									
I	Food Adulterati	on						the Unit		
	Sources of food,		ntages and	d disadvanta	iges Foo	nd adul	teration -			
	contamination of wheat, rice, milk, butter etc. with clay stones, water and toxic chemicals -Common adulterants, Ghee adulterants and their detection.									
	Detection of adult									
II	Food Poison									
	Food poisons - na									
	BHC, Malathion)	-Chemical	poisons	- First aid	d for po	oison (consumed			
TTT	victims. Food Additives									
III	Food additives	-artificial s	weetener	s – Sacchar	rin - Cs	ıclomat	eand			
	Aspartate Food f				•					
	Food colours	iavours est	ers, uraen	iyacs ana m	cicrocycr	ic com	pounus	6		
	 Emulsifying ag 	gents – prese	ervatives -	leavening ag	gents. Bal	king po	wder –			
	yeast – tastemaker	s - MSG - y	vinegar.			0 1				
IV	Beverages									
	Beverages-softdrir							6		
	Carbonation-addic	tionto alcoh	ol– diseas	ses ofliver a	ndsocial	probler	ns.			
${f V}$	Edible Oils	Carrage - C	a:1a	. d.,	61		.1:1.			
	Fats and oils - preservation.Satu									
	and PUFA in pre							O		
	value,saponification	-			11 OI 1001	ne valu	C,1X1V1			
	· arao, suponimouno	, araco an	3 011011 012					1		

	Course Outcomes								
Course Outcomes	On completion of this course, students will;								
CO1	learn about Food adulteration - contamination of Wheat, Rice, Milk, Butter.								
CO2	get an awareness about food poisons like natural poisons (alkaloids - nephrotoxin)pesticides, DDT, BHC, Malathion								
CO3	get an exposure on food additives, artificial sweeteners, Saccharin, Cyclomate and Aspartate in the food industries.								
CO4	acquire knowledge on beverages, soft drinks, soda, fruit juices and alcoholic beveragesexamples.								
CO5	study about fats and oils - Sources of oils - production of refined vegetable oils - preservation. Saturated and unsaturated fats -MUFA and PUFA								

Text Books (Latest Editions)

- 1. Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishing house, 2010.
- 2. Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S. Chand& Co. Publishers, second edition, 2006.
- 3. Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishning house, 2010.
- 4. Food Chemistry, Dr. L. Rakesh Sharma, Evincepub publishing, 2022.
- 5. Food processing and preservation, G. Subbulakshmi, Shobha A Udipi, Pdmini S Ghugre, New age international publishers, second edition, 2021.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. H.-D. Belitz, Werner Grosch, Food Chemistry Springer Science & Business Media, 4th Edition, 2009.
- 2. M.Swaminathan, Food Science and Experimental Foods, Ganesh and Company,1979.
- 3. Hasenhuettl, Gerard. L.; Hartel, Richard. W. Food Emulsifiers and their applications Springer New York 2nd ed. 2008.
- 4. Food Chemistry, H.-D. Belitz, W. Grosch, P. Schieberle, Springer, fourth revised and extended edition, 2009.
- 5. Principles of food chemistry, John M. deMan, John W. Finley, W. Jefferey Hurst, Chang Yong Lee, Springer, Fourth edition, 2018.

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

3 – Strong, 2 – Medium, 1 - Low

Mapping with Programme Specific Outcomes:

Mapping with Frogramme Specific Outcomes:											
CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	3	3	3	3						
CO2	3	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
Weightage	15	15	15	15	15						
Weighted percentage of											
Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0						

Level of Correlation between PSO's and CO's

Title of the	he Course	Basic Pr	inciples o	f Chemistr	'V					
Part		IV			<u> </u>					
	EC	Year	I	Credits	2	C	ourse	224	402122	
Category	FC FC	Semeste	r I		2	C	Code		234403122	
Instruction per week	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total	
per week	•	2	-		2	25	75		100	
			Learning	g Objective	es					
	• To acquire	basic imp	ortance in	Chemistry						
	To understa	and the b	asic cond	cepts of es	timatio	n of ele	ements			
		To gain a knowledge of Titrations, Indicators and Semimicro Qualitative								
	Analysis									
UNIT			lo. of iods for							
ONII								th	e Unit	
	Lassaigne's Test, l	rection and Estimation of Elements: saigne's Test, Beilstein Test, Estimation of Nitrogen by Kjeldahl's Method, ogens and Sulphur by Carius Method.								
		lecular Weight Determinations:								
	Silver Salt Method	ver Salt Method for Acids, Platinic Chloride Method for bases, Volumetric								
	Method for Acid	lethod for Acids and Bases, Problem in Determining Empirical and								
	Molecular Formula	a.								
	Volumetric Ana	•								
	Basic Principles of								6	
	Molality, Normali	•	•	•						
	Requirements of a		andard Soi	ution – Seco	ndary sta	naara s	olutions.			
	Types of Titration Types of Titration		ostora No	utrolization	Paday 1	Procinit	otion and			
	Complex Formation								6	
	Indicators in Acid									
	Semimicro Qual			- T		<u> </u>	6			
*	Types of Reaction		•	tive Analysis	s (Defini	tion on	ly) – Dry			
	Reactions - P	recipitation	Reaction	n – Com	nplexation	n Rea	ction –		6	
	RedoxReaction -I			~	ne Analy	sis of (Cations –			
	Oxalate, Borate, F.	luoride, Ch								
			Course	Outcomes	3					
Course	On completic	on of this c	ourse, stud	dents will;					-	
Outcome	es									
CO1	learn about t	the detecti	on and es	timation of	element	s				
CO2	get knowledg	ge on the	molecular	weight dete	erminatio	on				
CO3	acquire infor	mation abo	out the cor	ncept of vol	umetric	analys	is			
CO4	discuss about								-	
CO5	discuss the co			<u> </u>						

Text Books (Latest Editions)

- 1. Bahl S., and Arun Bahl, Advanced Organic Chemistry, S.Chand and Co., New Delhi, 1999.
- 2. Finar I.L., Organic Chemistry, Vol. II, 5th Edition, ELBS, England, 1975.
- 3. Soni P.L., Organic Chemistry, S.Chand and Co., New Delhi, 2007.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 01. Bahl S., and Arun Bahl, Advanced Organic Chemistry, S.Chand and Co., New Delhi, 1999.
- 02. Bansal, A Text Book of Organic Chemistry, New Age International Publishers, New Delhi, 1999.
- 03. Finar I.L., Organic Chemistry, Vol. I and II, 5th Edition, ELBS, England, 1975.
- 04. Morrison R.T., and Boyd R.W., Organic Chemistry, 6th Edition, Prentice Hall, 1995, New Delhi.
- 05. Singh and Mukherji, Reaction Mechanism in Organic Compounds, Mcmillan, India, 1998.
- 06. Soni P.L., Organic Chemistry, S.Chand and Co., New Delhi, 2007.
- 07. Pandey O.P., Bajpai D.N., and Giri S., Practical Chemistry, S.Chand and Company Limited, New Delhi, 2005.
- 08. Venkateswaran V., Veerasamy R., and Kulandaivelu A.R., Basic Principles of Practical Chemistry, Sultan Chand and Sons, New Delhi, 1993.

Web Resources

- 1) https://onlinecourses.nptel.ac.in
- 2) http://www.mikeblaber.org/oldwine/chm1045/notes_m.htm l
- 3) http://www.ias.ac.in/initiat/sci_ed/resources/chemistry/Inorganic.html
- 4) https://swayam.gov.in/course/64-atomic-structure-and-chemical-bonding
- 5) https://www.chemtube3d.com/

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

3 – Strong, 2 – Medium, 1 - Low

Mapping with Programme Specific Outcomes:

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of					
Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	he Course	General	Chemistr	y - II						
Part		III								
Category	Core – 3	Year	I	Credits	5		ourse	232203201		
		Semester	· II	TL		C	ode			
per week	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	al Total		
per week		4	1		5	25	75	100		
			Learning	g Objective	es					
	 chemistry of 	f acids, bas	es and io	nic equilibr	ium					
	properties of s and p-block elementschemistry of hydrocarbons									
	• applications	of acids ar	nd bases							
	• compounds	of main blo	ock eleme	ents and hy	drocarbo	ons				
								No. of		
UNIT		Periods for								
I								the Unit		
	Acids, bases and Ionic equilibria Concepts of Acids and Bases - Arrhenius concept, Bronsted-Lowry concept, Lewis concept; Relative strengths of acids, bases and dissociation constant; dissociation of poly basic acids, ionic product of water, pH scale, pH of solutions; Degree of dissociation, common ion effect, factors affecting degree of dissociation; acid base indicators, theory of acid base indicators – action of phenolphthalein and methyl orange, titration curves - use of acid base indicators; Buffer solutions – types, mechanism of buffer action in acid and basic buffer, Henderson-Hasselbalch equation; Salt hydrolysis - salts of weak acids and strong bases, weak bases and strong acids, weak acids and weak bases - hydrolysis constant, degree of hydrolysis; Solubility product - determination and applications; numerical problems involving the core concepts.									
	Chemistry of s Hydrogen: Positi Comparative stud halides, carbonat Mg. Preparation, alkaline earth me Chemistry of p preparation and borax. Extractio comparison of ca properties, struct per dicarbonates.	ion of hyd dy of the e tes and bic properties stals. Anom - Block El d structure on of Al and arbon with cure and us	rogen in elements and uses alous behinders (of dibord its uses. silicon.	with respects. Diagonals of NaOH, naviour of E Group 13 or and be Alloys of E Carbon-di-s	relation Na2CC Be. 414) orazine. Al. sulphide	des, hy iship o 03, KB Chen – Pr	ydroxides, of Li with or, KClO3 nistry of eparation,	15		

III	Chemistry of p- Block Elements (Group 15-18)	
	General characteristics of elements of Group 15; chemistry of H2N-NH2, NH2OH, HN3 and HNO3. Chemistry of PH3, PCl3, PCl5, POCl3,	
	P2O5 and oxy acids of phosphorous (H3PO3 and H3PO4).	
	General properties of elements of group16 - Structure and allotropy of	
	elements - chemistry of ozone - Classification and properties of oxides -	
	oxides of sulphur and selenium – Oxy acids of sulphur (Caro's and	
	Marshall's acids).	
	Chemistry of Halogens: General characteristics of halogen with	15
	reference to electro-negativity, electron affinity, oxidation states and	
	oxidizing power. Peculiarities of fluorine. Halogen acids (HF, HCl,	
	HBr and HI), oxides and oxy acids (HClO4). Inter-halogen compounds	
	(ICl, ClF3, BrF5 and IF7), pseudo halogens [(CN)2 and (SCN)2] and	
	basic nature of Iodine.	
	Noble gases: Position in the periodic table. Preparation,	
	properties and structure of XeF2, XeF4, XeF6 and XeOF4; uses of	
	noble gases - clathratecompounds.	
IV	Hydrocarbon Chemistry-I	
	Petroproducts: Fractional distillation of petroleum; cracking,	
	isomerisation, alkylation, reforming and uses Alkenes-Nomenclature, general methods of preparation – Mechanism	
	of \Box - elimination reactions – E1 and E2 mechanism - factors	
	influencing – stereochemistry – orientation – Hofmann and Saytzeff	
	rules. Reactions of alkenes – addition reactions – mechanisms –	
	Markownikoff's rule, Kharasch effect, oxidation reactions -	
	hydroxylation, oxidative degradation, epoxidation, ozonolysis;	
	polymerization.	
	Alkadienes	
	Nomenclature - classification - isolated, conjugated and cumulated	
	dienes; stability of conjugated dienes; mechanism of electrophilic	15
	addition to conjugated dienes - 1, 2 and 1, 4 additions; free radical	
	addition to conjugated dienes—Diels—Alder reactions—polymerisation	
	 polybutadiene, polyisoprene (natural rubber), vulcanisation, polychloroprene. 	
	Alkynes	
	Nomenclature; general methods of preparation, properties and	
	reactions; acidic nature of terminal alkynes and acetylene,	
	polymerisation and isomerisation.	
	Cycloalkanes: Nomenclature, Relative stability of cycloalkanes,	
	Bayer's strain theory and its limitations. Conformational analysis of	
	cyclohexane, mono and di substituted cyclohexanes.	
	Geometrical isomerism in cyclohexanes.	

V	UNIT-V					
	Hydrocarbon Chemistry - II					
	Benzene: Source, structure of benzene, stability of benzene ring, molecularorbital picture of benzene, aromaticity, Huckel's (4n+2) rule and its applications. Electrophilic substitution reactions - General mechanism of aromatic electrophilic substitution - nitration, sulphonation, halogenation, Friedel-Craft's alkylation and acylation. Mono substituted and disubstituted benzene - Effect of substituent -					
	orientation and reactivity.	15				
	Polynuclear Aromatic hydrocarbons: Naphthalene – nomenclature,					
	Haworth synthesis; physical properties, reactions — electrophilic substitution reaction, nitration, sulphonation, halogenation, Friedel — Crafts acylation & alkylation, preferential substitution at □ - position					
	- reduction, oxidation – uses.					
	Anthracene – synthesis by Elbs reaction, Diels – Alder reaction and					
	Haworth synthesis; physical properties; reactions - Diels-Alder reaction, preferential substitution at C-9 and C-10; uses.					

	Course Outcomes							
Course On completion of this course, students will;								
Outcomes								
CO1	explain the concept of acids							
CO2	discuss the periodic properties of sand p- block elements							
CO3	classify hydrocarbons							
CO4	explain theories of acids							
CO5	assess the application of hard and soft acids indicators							

Text Books (Latest Editions)

- 1. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nded, S.Chand and Company, New Delhi.
- 2. Sathya Prakash, Tuli G D,Basu S K and Madan R D, (2003), Advanced Inorganic Chemistry, 17th ed., S.Chand and Company, New Delhi.
- 3. Bahl B S, Arul Bhal, (2003), Advanced Organic Chemistry, 3rd ed., S.Chand and Company, New Delhi.
- 4. Tewari K S, Mehrothra S N and Vishnoi N K, (1998), Text book of Organic Chemistry, 2nd ed., Vikas Publishing House, New Delhi.
- 5. Puri B R, Sharma L R, (2002), Principles of Physical Chemistry, 38th ed., Vishal Publishing Company, Jalandhar.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. Maron S H and Prutton C P, (1972), Principles of Physical Chemistry, 4th ed., The Macmillan Company, Newyork.
- 2. Barrow G M, (1992), Physical Chemistry, 5th ed., Tata McGraw Hill, NewDelhi.
- 3. Lee J D, (1991), Concise Inorganic Chemistry, 4thed., ELBS WilliamHeinemann, London.
- 4. Huheey J E, (1993), Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., Addison Wesley Publishing Company, India.
- 5. Gurudeep Raj, (2001), Advanced Inorganic Chemistry Vol I, $26^{\hbox{th}}$ ed., Goel Publishing House, Meerut.
- 6. Agarwal O P, (1995), Reactions and Reagents in Organic Chemistry,8thed., Goel Publishing House,Meerut.

Web Resources

- 1. https://onlinecourses.nptel.ac.in
- 2. http://cactus.dixie.edu/smblack/chem1010/lec_ture_notes/4B.html
- 3. http://www.auburn.edu/~deruija/pdareson.pdfhttps://swayam.gov.in/course/64-atomic-structure-and-chemical-bonding

MOOC components

http://nptel.ac.in/courses/104101090/

Lecture 1: Classification of elements and periodic properties

http://nptel.ac.in/courses/104101090/

Mapping with Programme Outcomes:

	FF									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

3 – Strong, 2 – Medium, 1 - Low

Mapping with Programme Specific Outcomes:

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	QUALIT PREPAR		ORG. OFORGA	ANIC NIC CO		NALYS UNDS -		AND B
Part		III							
Category	Core 4	Year Semester	I	Credits	2		ourse ode	23	32203202
Instructi per week	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total
per ween	•	-	-	3	2	25	75		100
	,]	Learning	g Objective	S				
	laboratory sahandling glaanalysis of opreparation	ass wares organic com	•	ds					No. of
UNIT			Det					F	Periods for the Unit
	Safety rules, sy. Basic ideas abou Chemistry labora	t Bunsen bo atory glassw	urner, its ⁄are –bas	operation a	nd parts	of the	e flame.		
III	Qualitative Or Preliminary ex sulphur andhal Aromatic and identification of Confirmation of mo and add carl prin mo anii Prep Preparation of i. Nitration ii. Halogenati iii. Oxidation iv. Microwave v. Methyl ber vi. Salicylic a vii. Rearranger 1. Purification of alcohol) and dist 2. Determination 3. Steam distillation	ganic Analamination, ogens aliphatic nare functional of functional of functional nocarboxylinohydric plehyde, keto bohydrate (mary, secondonamide, dide, nitro control of Organic Control of Corganic Control	detection ature, Te I groups I groups Ic acid, conenol, po ne, ester reducing dary, ter iamide, t ompound derivativ Compour from Ph no acetar cid from eactions i enzoic ac ethyl Sal zil to Ber of benzar ompound	st for saturations saturated in the saturation of special staturated in the saturated in th	element ation and ility tests acid acid ducing s tional gracetanility acetanility acetanility of organ	s - nitrod unsass sugars) oups ide id n (from	n water	/	
	fruits/eucalyptus 4. Chromatogra (i) Separation (ii)Thin Laye pigments /permanganar dichromate	aphy (any of amino a er Chromat te	cids by l	Paper Chroi	natograp		plant		
	(iii) Column C and xanthop anthracene	Chromatogra phyll from l					ophyll		

5. **Electrophoresis** – Separation of amino acids and proteins. (**Demonstration**)

Isolation of casein from milk/Determination of saponification value of oil orfat/Estimation of acetic acid from commercial vinegar. (Any one Group experiment) (4,5& 6–not for ESE)

	Course Outcomes								
Course	On completion of this course, students will;								
Outcomes									
CO1	observe the physical state, odour, colour and solubility of the given organic compound.								
CO2	identify the presence of special elements and functional group in an unknown organic compound performing a systematic analysis.								
CO3	compare mono and dicarboxylic acids, primary, secondary and tertiary amines, mono and diamides, mono and polyhydric phenols, aldehyde and ketone, reducing and non- reducing sugars and explain the reactions behind it.								
CO4	exhibit a solid derivative with respect to the identified functional group.								
CO5	observe the physical state, odour, colour and solubility of the given organic compound.								

	References Books								
(Latest	Latest editions, and the style as given below must be strictly adhered to)								
	1. Venkateswaran, V.; Veeraswamy, R.; Kulandaivelu, A.R. Basic Principles of								
	Practical Chemistry, 2 nd ed.; Sultan Chand: New Delhi, 2012.								
	2. Manna, A.K. Practical Organic Chemistry, Books and Allied: India,2018.								
	3. Gurtu, J. N; Kapoor, R. Advanced Experimental Chemistry (Organic), Sultan								
	Chand: New Delhi, 1987.								
	4. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.R. Vogel's								
	Textbook of Practical Organic Chemistry, 5th ed.; Pearson: India,1989.								
	Web Resources								
	https://www.vlab.co.in/broad-area-chemical-sciences								

Mapping with Programme Outcomes:

							_	_	_	_
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	S	S	S	S	S	S	M	S	M

3 – Strong, 2 – Medium, 1 - Low

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of					
Course Contribution to	3.0	3.0	3.0	3.0	3.0
Pos					

Level of Correlation between PSO's and CO's

PART Category SEC NME Instructional Hoper week Prerequisites Objectives of	<u> </u>	Year Semester	I	Credits				
Instructional Hoper week Prerequisites Objectives of	<u> </u>		I	Credits				
Instructional Hoper week Prerequisites Objectives of		Samastan		Cicuits	2		ourse	234603222
per week Prerequisites Objectives of	nirs	Semester	II	Lah		C	ode	
Prerequisites Objectives of	Juis	Lecture	Tutorial Lab Practice Total CIA Extern			External	Total	
Objectives of		2	-		2	25	75	100
•		econdary ch						
he course Course Outline	cherproc	nistry of m essing of n	ilk and m nilk	ig an overa	ts			
	Milk-det proteins, colour, affecting neutraliz solids in Unit II Processi Microbio chemica	carbohydrodour, acidg the conservex amplemilk. Ing of Milkology of milk changes	rates, vitadity, specemposition es and the control of the control	amins and acific gravitation of milestruction of place in	minerals y, viscos k - ad on- estim micro - milk du	- physity are ulterare action organe to	sical propertion of conductions, preserve of fat, acid	nilk - lipids ties of milk vity -Factor vatives with lity and tota lk, physico boiling HTST (Higl
	Pasteuriz UNIT II Major M Cream gravitati fatin cre salted bu constitue	zation. II Milk Produ - definition onal and common Butter atter, estimated the common co	ncts n - con entrifuga - definition ation of a	nposition - l methods on -composicidity and lulterants	chemis of separa sition - th moisture added to	try on the content of	f creaming of cream - of churning - nt in butter.	g process estimation of desi butter Ghee - major detection - natural and
	diagram milk - to condense UNIT V Fermen Ferment cultured cream,	Milk lised milk - of manufactoried milk-de ted and other ed milk - outter mil	cture - He Incitation finition, of her Milk roducts definition k - Bu	omogenised milk - Vegomposition of cultural garious	d milk - figetable to and nut	lavour oned m ritive v milk ample cidoph	value definition, conditions	

Recommended	1. K. Bagavathi Sundari, Applied Chemistry, MJP Publishers, first									
Text	edition,2006.									
	2. K. S. Rangappa and K.T. Acharya, Indian Dairy Products, Asia									
	PublishingHouse New Delhi, 1974.									
	3.Text book of dairy chemistry, M.P. Mathur, D. Datta Roy, P. Dinakar,									
	IndianCouncil of Agricultural Research, 1 st edition, 2008.									
	4. A Text book of dairy chemistry, Saurav Singh, Daya Publishing house, 1									
	stedition, 2013.									
	5. Text book of dairy chemistry, P. L. Choudhary, Bio-Green book									
	publishers,2021.									
Reference	1. Robert Jenness and S. Patom, Principles of Dairy Chemistry, S. Wiley,									
Books	New York, 2005.									
	2. F.P.Wond, Fundamentals of Dairy Chemistry, Springer, Singapore, 2006.									
	3. Sukumar De, Outlines of Dairy Technology, Oxford University Press,									
	NewDelhi, 1980.									
	4. P.F.Fox and P.L.H. Mcsweeney, Dairy Chemistry and Biochemistry,									
	Springer, Second edition, 2016.									
	5. Dairy chemistry and biochemistry, P. F. Fox, T. Uniacke-Lowe, P.L.H.									
	McSweeney, J.A. OMahony, Springer, Second edition, 2015.									

Course Learning Outcomes (for Mapping with POs and PSOs) On completion of the course the students should be able to

- **CO 1:** understand about general composition of milk constituents and its physical properties.
- **CO 2:** acquire knowledge about pasteurization of Milk and various types of pasteurization Bottle, Batch and HTST Ultra High Temperature Pasteurization.
- CO 3: learn about Cream and Butter their composition and how to estimate fat in cream and Ghee
- CO 4: explain about Homogenized milk, flavoured milk, vitaminised milk and toned milk.
- CO 5: have an idea about how to make milk powder and its drying process types of drying process

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO	PSO	PSO	PSO	PSO
	1	2	3	4	5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of					
Course Contribution to	3.0	3.0	3.0	3.0	3.0
Pos					

Level of Correlation between PSO's and CO's

Title of the	Course	COSME	TICS A	ND PERS	ONAL	GRO	OMINO		
PART		IV	71100 11		7011112	<u> </u>	<u> </u>		
		Year	I	Credits		С	ourse		
Category	SEC – III	Semester		Credits	2		ode	2	34403222
Instruction per week	nal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Exteri	nal	Total
	le re	2	-		2	25	75		100
Prerequisite		her seconda							
Objectives of course		formulhair, sk	ations of ain and de	iliarizing the various type ental care tions and pe	es of cos	smetics	and the	eir si	gnificance
Course Out	Ski Nut ing sha adv dep Uni Hai Sha -ty Der Too Uni Ma Bas	rition of the redients; creving and seantages; as illatories. It II Ir care ampoos — types — ingredital care oth pastes — it III ke up	eams and unscreen tringent a pes – powlients ingredient tion – type	l lotions – (formulation skin too	cleansing cleansing cleansing control	ng, mo); Gel ey ing gel – i	oisturizi ls – fe gredients ngredier	ng a ormi , sk	ce powder – all purpose, alation and in lightness, conditioner
	Cla con cat, cha Uni Bea Fac blea tint hair	musk from the rectangle of the rectangle	- Natural nimal orig om musk - esters - eents - advan - advanta g types; h ng; wax	gin – amber	gries fr nthetic aldehyd sadvanta antages; ag and d	om wh - cla es - ko ges; fa shapi yeing;	nale, cive ssification etones ace masing the b	ks –	s; eyelash waving –
Recommend	ded That	nkamma Ta	cob (199	7) Foods, d	lriigs an	d com	etics – 7	4	nsumer
Text				tion, Londo	-	. com		100	113011101
ReferenceB	ooks 1. 2.	Wilkinson ed.,Chemic George Ho	J B E and al Publish ward, (19	Moore R J. ers, London 987) Princip herones, Ch	, (1997) n. ples and	practi			
Website and		-		om/page75.l	html				
learning sou	urce 2.	Net.foxsm	/list/284						

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

- **CO1:** know about the composition of various cosmetic products
- **CO2** understand chemical aspects and applications of hair care and dental care and skincare products.
- CO3 understand chemical aspects and applications of perfumes and skin care products.
- CO4 to understand the methods of beauty treatments their advantages and disadvantage
- CO5 understand the hazards of cosmetic products.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO	PSO	PSO	PSO	PSO
	1	2	3	4	5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	e Cours	se	CHEMISTRY FOR BIOLOGICAL SCIENCE I							
				(Fo	r Zoolog	у Мај	or St	udents	s)	
Part			III			1				
Category	EC – I Generi	[c Elective	Year Semeste	ı I	Credits	3		ourse ode	232203121	
Instruction			Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total
per week	per week			_		4	25	75		100
Prerequisite	S	Higher se	ccondary of	chemistry		<u> </u>		13	I	100
Objectives course Course Ou	of the	This coun b fr n in s UNIT I Chemi non-bo	rse aims a vasics of a undament unclear ch importance eparation ical Bondi onding or	at providing atomic orbitals of orgenistry and purificant and puri	ng knowled bitals, chemic chemic and industriality drugs ication technology. Nuclear Carolity Orbitality diagram and magnet	nical borstry al chemiand hniques. hemistry al Theorems for H	stry y ry-bon lydroge	ding, an	tibor	nding and
		Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotone and Isomers-Differences between chemical reactions and nuclear reactions- group displacement law. Nuclear binding energy - mass defect - calculations. Nuclear fission and nuclear fusion - differences - Stellar energy. Applications of radioisotopes - carbon dating, rock dating an medicinal applications. Unit II Industrial Chemistry Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required). Silicones: Synthesis, properties and uses of silicones. Fertilizers: Urea, ammonium sulphate, potassium nitrate NPK fertilizers superphosphate, triple superphosphate. UNIT III Fundamental Concepts in Organic Chemistry						nuclear ass defect Stellar ating and ted water etails not		
		Hybridiza C2H4, conseque mesomer Reaction electroph alkylation	ation: Or C2H2 ences on ic, hype mechan ilic subs	bital over and C6 Ka and or conjugi isms: 's stitution;	lap hybrid H6. Pola K _b of org ation and Types of nitration	lization or effect ganic act I steric f react n, ha	and g cts: cids ar e-exam ctions- alogena	Inductive and bases ples ar arometion,	e e s, el nd e natici Fri	CH4, effect and ectromeric, explanation. ity-aromatic edel-Craft's properties

	UNIT IV
	Drugs and Speciality Chemicals
	Definition, structure and uses: Antibiotics viz.,
	Penicillin, Chloramphenicol and streptomycin; Anaestetics viz.,
	Chloroform and ether; Antipyretics viz., aspirin, paracetamol
	and ibuprofen; Artificial Sweeteners viz., saccharin, Aspartame
	and cyclamate; Organic Halogen compounds viz., Freon,
	Teflon.
	UNIT V:
	Analytical Chemistry
	Introduction qualitative and quantitative analysis. Principles of
	volumetric analysis. Separation and purification techniques:
	extraction, distillation and crystallization. Chromatography:
	principle and application of column, paper and thin layer
	chromatography.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable
	skills.
RecommendedText	1. V. Veeraiyan, Textbook of Ancillary Chemistry; High
	mountpublishing house, Chennai, first edition,2009.
	2. S. Vaithyanathan, Text book of Ancillary Chemistry;
	PriyaPublications, Karur,2006.
	3. ArunBahl, B.S.Bahl, Advanced Organic Chemistry;
	S.Chandand Company, New Delhi, twenty third
	edition,2012.
	4. P.L.Soni, H.M.Chawla, Text Book of Inorganic
	Chemistry; Sultan Chand & sons, New Delhi, twenty
	ninth edition, 2007.
L.	

Reference Books	1. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry;
	Sultan Chand and Company, New Delhi, twentieth edition,
	2007.
	2. B.K,Sharma, Industrial Chemistry; GOEL publishing
	house, Meerut, sixteenth edition, 2014.
	3. Jayashree gosh, Fundamental Concepts of Applied
	Chemistry;
	Sultan & Chand, Edition 2006.

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

- **CO1:** state the theories of chemical bonding, nuclear reactions and its applications.
- **CO 2:** evaluate the efficiencies and uses of various fuels and fertilizers.
- **CO 3:** explain the type of hybridization, electronic effect and mechanism involved in the organic reactions.
- **CO 4:** demonstrate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars.
- **CO 5:** analyse various methods to identify an appropriate method for the separation of chemical components.

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

CO /PSO	PSO	PSO	PSO	PSO	PSO
	1	2	3	4	5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of					
Course Contribution toPSOs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the (Course		CHEMIS	TRY PR	RACTICAL	L FOR	PHYS	ICAL A	AND	
				BIO	LOGICAI	L SCIE	NCE			
			(fo	r Zoology	Students -	I Year /	I Seme	ester ;		
			for	Physics S	students – I	[Year /]	III Sem	ester)		
Part		II	I							
Catagomy	EC	т	Year	I/II	Credits	1	C	ourse	22	32203122
Category	EC	-1	Semester	I/III		1	C	ode	23	02203122
Instruction per week	nal Hou	rs	Lecture	Tutorial	Lab Practice	Total	CIA	Exter	nal	Total
			-	-	2	2	25	75		100
Prerequisit	es									
Objectives	of the] П	This course	aims to p	provide kno	wledge	on the			
course		 basics of preparation of solutions. 								
		•	principles	and prac	ctical exper	ience of	volum	etric an	alysis	S
Course Ou	tline	VOLU	IMETRIC	ANALY	SIS					
			1. Estim	ation of	sodium hy	droxide	using	standard	d sod	ium
			carbo	nate.						
			2 Estim	ation of 1	hydrochlori	c acid n	sing st	andard (ovali	c acid
					ferrous sulp		_			
					errous sur exalic acid		_			
					potassium ₁	_			-	
					potassiani	permang	,anate t	using su	uman	dsodium
			hydro			_				
					magnesium	_				
			7. Estim	ation of t	ferrous ion	using di	phenyl	amine	as in	dicator.
Reference 1	Books				erasamy, A					-
		Prac	tical Chem	istry; Sul	tan Chand	& sons,	Second	d edition	n, 199	97.

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

- CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.
- CO 2: design, carry out, record and interpret the results of volumetric titration.
- CO 3: apply their skill in the analysis of water/hardness.
- CO4: analyze the chemical constituents in allied chemical products

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of					
Course Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of the	e Cours	se			OR BIOLO Major Stu				ester	·)
Category	EC	II	Year Semester	I	Credits	3		ourse ode	23	2203221
Instruction per week	nal Hou	ırs	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	External Total	
		1	4	-		4	25	75		100
Prerequisite	es	Cl	nemistry for l	Biological	Sciences I					
Objectives	of the	Th	is course aim	s to provi	de knowled	lge on				
course					ordination				ydrat	tes.
			 Amino A 	cids and E	Essential ele	ements o	f biosy	stem		
					cepts of kin					
			 provide f 	undamenta	als of electr	rochemis	stry and	d photocl	hemi	stry
Course Ou	tline	UN	IT I							
		C	o-ordination	Chemist	ry and Wa	ter Tecl	hnolog	y		
			o-ordination		-		_	-	lome	enclature -
		W	erner'stheory	y - EAN ri	ıle - Paulin	g's theo	ry – P	ostulates	- At	plications
			[Ni(CO)4],							
			emoglobin						_	
			alitative and				<i>y</i>	.,	rr ·	
		_	ater Technol	-	-		minati	on of har	dnes	s of water
			ing EDTA 1							
			OĎ.	,				1		
		Uni	it II Carboh	vdrates						
				•	paration ar	nd prope	rties o	f glucose	e and	1 fructose.
		D	iscussion of o		-			_		
			ictose interc							
			d cellulose.	0111011011	. Tropurum	on una	proper	01 0	dere	be, staren
		UNI	T III							
		A	mino Acids	and Essen	tial elemei	nts of bi	osyste	m		
			Classific	cation - pro	eparation ar	nd prope	rties of	falanine	,prep	oaration of
		di	peptides usin	ig Bergma	nn method	- Protei	ns- cla	ssificatio	n –	structure -
			olour reaction							
		an	d DNA – str	ructure. Es	ssentials of	trace m	etals ii	n biologic	cal s	ystem-Na,
		Cı	ı, K, Zn, Fe,	Mg.						
		UNI	T IV							
			ectrochemis	trv						
			alvanic cells	·	ard hydrog	en elec	trode	- calome	el e	lectrode -
			andard electi							
			ectrolytes -						_	
			rations - pH	-		-	-	-		
			biological a		•					
			pes of cells		-	_				1 0
		UNI				<u>+</u> _				
			- 10tochemist1	ry						
			rothus - Dra	•	w and Star	rk-Einste	ein's 1	aw of n	hoto	chemical
			uivalence,	Quantum			ogen	-chloric		reaction.
		1 -		_	•	-	_		10	reaction.
			nosphorescen							
		phot	osensitizatio	n and phot	osynthesis	(definiti	on wit	n exampl	les).	

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be	
includedin the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. V. Veeraiyan, Textbook of Ancillary Chemistry; High
Text	mountpublishing house, Chennai, first edition, 2009.
	2. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya
	Publications, Karur, 2006.
	3. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry;
	S.Chandand Company, New Delhi, twenty third edition,
	2012.
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry;
	SultanChand & sons, New Delhi, twenty ninth edition,
	2007.
Reference Books	1. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry;
	S.Chandand Company, New Delhi, twenty third edition,
	2012.
	2. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry;
	Sultan Chand & sons, New Delhi, twenty ninth edition,
	2007.
	3. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry;
	Sultan Chand and Company, New Delhi, twentieth edition,
	2007.
	4. B.R.Puri, L.R.Sharma, M.S.Pathania, Text book
	Physical Chemistry; Vishal Publishing Co., New Delhi,
	forty seventh edition, 2018.
	5. B.K,Sharma, Industrial Chemistry; GOEL publishing house,
	Meerut, sixteenth edition, 2014.

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

- **CO 1:** write the IUPAC name for complex, different theories to explain the bonding in coordination compounds and water technology.
- **CO 2:** explain the preparation and property of carbohydrate.
- CO 3: enlighten the biological role of transition metals, amino acids and nucleic acids.
- **CO 4:** apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuel cells.

CO 5: outline the various type of photochemical process.

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

Title of the	e Course		CHEMISTRY PRACTICAL FOR PHYSICAL AND BIOLOGICAL SCIENCE (for Zoology Students – I Year / I Semester;						
				sics Stude					
Part		III	•						
Category	EC – II(Gene	ric Year	I/II	Credits	1		ourse	21	32203222
Category	Elective)	Semeste	er II/IV			C	ode	2.	
Instruction per week	nal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Exteri	nal	Total
per week		_	-	2	2	25	75		100
Objectives course		identdiffetheirdeter	This course aims to provide knowledge on • identification of organic functional groups • different types of organic compounds with respect to their properties. • determination of elements in organic compounds. **STEMATIC ANALYSIS OF ORGANIC COMPOUNDS**						
		The analysis	must be c	arried out	as follo	ws:			
Reference 1		primary (b) Detection (c) To disting compount (d) To disting V.Venkate	(c) To distinguish between aliphatic and aromatic compounds.						
		Principles edition, 19		I Chemistr	y; Sultai	n Chan	a & son	s, Se	econd
Course Lea	rning Outco	mes (for Ma	apping wi	th POs an	d PSOs	s)On			

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

- CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.
- CO 2: design, carry out, record and interpret the results of volumetric titration.
- CO 3: apply their skill in the analysis of water/hardness.
- CO4: analyze the chemical constituents in allied chemical products

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

CHOICE E	ASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK
Programme	M.Sc.
Programme Code	22
Duration	2 years for PG
Programme	PO1: Problem Solving Skill
Outcomes	Apply knowledge of Management theories and Human
(Pos)	Resource practices to solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill
	Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skill Equip with skills and competencies to become an
	entrepreneur. PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.
Programme	PSO1 - Placement
Specific	To prepare the students who will demonstrate respectful
Outcomes	engagement with others' ideas, behaviors, beliefs and apply
(PSOs)	diverse frames of reference to decisions and actions.
	PSO 2 - Entrepreneur
	To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill
	that will facilitate startups and high potential organizations.
	PSO3 – Research and Development
	Design and implement HR systems and practices grounded in research that comply with employment laws, leading the
	organization towards growth and development.
	PSO4 – Contribution to Business World
	To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
	PSO 5 – Contribution to the Society To contribute to the development of the society by collaborating

with stakeholders for mutual benefit.

CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK

PG Chemistry

Semester I

		Schicster 1			
Part		Course	Code	Cr.	Hrs
A	CC – 1	Organic Reaction Mechanism – I	232204101	4	5
	CC – 2	Structure and Bonding in Inorganic Compounds	232204102	4	5
	CC – 3	Organic Chemistry Practical	232204103	4	5
	EC –I	Pharmaceutical Chemistry	232204104	3	5
	(Generic/DS)	Nano Materials and Nano Technology	232204105		
	Elective - II	Electro Chemistry	232204106	3	5
		Molecular Spectroscopy	232204107		
	SEC I	Preparation of Consumer products Lab	232204108	2	3
В	AECC 1 – Soft Skill	Chemistry in Consumer Products	232204109	2	2
	Total			22	30
	l	SEMESTER II		1	I.
A	CC – 4	Organic Reaction Mechanism II	232204201	4	5
	CC - 5	Physical Chemistry – I	232204202	4	5
	CC – 6	Inorganic Chemistry Practicals	232204203	4	5
	EC – III	Medicinal Chemistry	232204204	3	5
		Green Chemistry	232204205		
	EC - IV	Bio Inorganic Chemistry	232204206	3	5
		Material Science	232204207		
Ъ	SEC – II	Drugs and Cosmetics	232204208	2	3
В	AECC 2	Food Preservation	232204209	2	2
				22	30
		SEMESTER III			
	CC – 7	Organic Synthesis and Photochemistry	232204301	4	5
	CC – 8	Coordination Chemistry – I	232204302	4	5
	CC – 9	Physical Chemistry Practical	232204303	4	5
A	EC - V	Pharmacognosy and Phytochemistry	232204304	3	5
		Biomolecules and Heterocyclic compounds	232204305		
	Core	Core Industry Module	232204306	3	4
В	SEC – III	Professional Communication Skill (Term Paper & Seminar Presentation)	232204307	2	4
	AECC – 3	Research Tools and Techniques in Chemistry	232204308	2	2
	Internship	Internship / Industrial Activity	232204309	2	_
	memomp	incinsing / incustrial activity	2322U 1 3U7	24	30
	I	SEMESTER IV	1		
	CC – 10	Coordination Chemistry - II	232204401	4	5
	CC – 11	Physical Chemistry – II	232204402	4	5
A	CC - 12	Analytical Instrumentation Technique Practicals	232204403	4	5
	CC – 13	Project with Viva Voce	232204404	3	4
		Professional Competency Skill		-	
В		enhancement course	232204405	2	4
	AECC – 4	Soft Skill – Computational Skill Chemical Conservation	232204406	2	2

С	EA		Exter	nsion Activ		232204407			1			
1		otal									24	30
Tit	le of th	e Course		ORGAN	IIC REA	CTION M	ЕСНА	NIS	M - I			
Ca	tegory	Core	- 1	Year Semester	I r I	Credits	4		Course Code	e	232	204101
	struction r week	nal Hour	S	Lecture	Tutorial	Lab Practice	Total	CIA Externa			al	Total
per	WCCI			4	1		5	25	5	75		100
	✓ To	ınderstand	the fe	acibility a		g Objective echanism of		org	nic rea	ctio	ne	
	To comprehend the techniques in the determination of reaction mechanisms.To understand the concept of stereochemistry involved in organic compounds.											
		correlate tion mech			the differ	rences invo	lved in	the	various	typ	pes of	f organic
					outes for t	he preparati	on of or	gani	c comp	oun	ds.	
U	NIT	<u> </u>		<i>.</i>	Deta	- 1 1		<u>U</u>	1		N Per	No. of iods for e Unit
	F C F C C i i F F	UNIT-I: Methods of Determination of Reaction Mechanism: Reaction intermediates, The transition state, Reaction coordinate diagrams, Thermodynamic and kinetic requirements of reactions: Hammond postulate. Methods of determining mechanism: non-kinetic methods - product analysis, determination of intermediates-isolation, detection, and trapping. Cross-over experiments, isotopic labelling, isotope effects and stereo chemical evidences. Kinetic methods - relation of rate and mechanism. Effect of structure on reactivity: Hammett and Taft equations. Linear free energy relationship, partial rate factor, substituent and reaction constants.										
	A C C I I I I I	UNIT-II: Aromatic and Aliphatic Electrophilic Substitution: Aromaticity: Aromaticity in benzenoid, non-benzenoid, heterocyclic compounds and annulenes. Aromatic electrophilic substitution: Orientation and reactivity of di- and polysubstituted phenol, nitrobenzene and halobenzene. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling; Sulphur electrophiles: sulphonation; Halogen electrophiles: chlorination and bromination; Carbon electrophiles: Friedel-Crafts alkylation, acylation and arylation reactions. Aliphatic electrophilic substitution Mechanisms: SE2 and SEi, SE1- Mechanism and evidences.										
	r c E S t	nucleophili nechanism and attack Bucherer a Smiles read Miphatic a rigonal ca	c sub ns - Ev ing nu nd Ros rrange nucleo rbon a Swain	stitution: idences - cleophile. senmund r ments. S _N philic sub	Mechani Reactivity Reactions, eactions, 1, ion pai estitutions arbon.S _N 1	lucleophilic sms - S _N A , Effect of s : Oxygen an von Richter, r, S _N 2 mech at an al , S _N 2, S _N i, a -Winstein re	Ar, S _N 1 structure ad Sulph Somme nanisms llylic ca and S _E 1	and ur-nu elet- and urbon mech	d Benz ving gr ucleoph Hauser eviden , aliph nanism	eyne oup iles, and ces. atic		15

an is be did do more for the control of the control	NIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical omerism due to asymmetric and dissymmetric molecules with C, N, S assed chiral centers. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality are to helical shape, methods of determining the configuration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation. D, L system, Cram's and relog's rules: R, S-notations, proR, proS, side phase and re phase ahn-Ingold-Prelog rules, absolute and relative configurations. on figurations of allenes, spiranes, biphenyls, cyclooctene, helicene, inaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylideneycloalkanes. Topicity and prostereoisomerism, chiral shift reagents and chiral solvating reagents. Criteria for optical purity: Resolution of acemic modifications, asymmetric transformations, asymmetric withesis, destruction. Stereoselective and stereospecific synthesis.	15
sy po C m re po op	NIT-V: Stereochemistry-II: Conformation and reactivity of acyclic vstems, intramolecular rearrangements, neighbouring group articipation, chemical consequence of conformational equilibrium - urtin-Hammett Principle. Stability of five and six-membered rings: aono-, di- and polysubstituted cyclohexanes, conformation and eactivity in cyclohexane systems. Fused and bridged rings: bicyclic, oly cyclic systems, decalins and Brett's rule. Optical rotation and epical rotatory dispersion, conformational asymmetry, ORD curves, ctant rule, configuration and conformation, Cotton effect, axial aloketone rule and determination of configuration.	15
	Course Outcomes	
Course Outcomes	On completion of this course, students will;	
CO1	To recall the basic principles of organic chemistry.	
	To understand the formation and detection of reaction intermedia	tes of organic

	Course Outcomes									
Course Outcomes	On completion of this course, students will;									
CO1	To recall the basic principles of organic chemistry.									
CO2	To understand the formation and detection of reaction intermediates of organic reactions.									
CO3	To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.									
CO4	To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.									
CO5	To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.									

- 1. J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001.
- 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.
- 3. P.S.Kalsi, Stereochemistry of carbon compounds, 8th edition, New Age International Publishers, 2015.
- 4. P. Y. Bruice, Organic Chemistry, 7th edn, Prentice Hall, 2013.
- 5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2ndedition, Oxford University Press, 2014

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A and B, 5th edition, Kluwer Academic / Plenum Publishers, 2007.
- 2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
- 3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
- 4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill, 2000.
- 5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6th edition, Pearson Education Asia, 2004.

Web Resources

- 01. https://sites.google.com/site/chemistryebookscollection02/home/organic-chemistry/organic
- 02. https://www.organic-chemistry.org/

Mapping with Programme Outcomes:

					- 0					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	e Course	STRUC	_	ND BONI	OING II	N INO	RGAN	IC		
Category	Core – 2	Year Semeste	I I	Credits	4		Course Code		232204102	
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
per week		4	4 1		5	25	75		100	

- To familiarize various diffraction and microscopic techniques.
 To study the effect of point defects and line defects in ionic crystals.
 To evaluate the structural aspects of solids.

UNIT	Details	No. of Periods for the Unit
I	UNIT-I: Structure of main group compounds and clusters: VB theory – Effect of lone pair and electronegativity of atoms (Bent's rule) on the geometry of the molecules; Structure of silicates – applications of Paulings rule of electrovalence – isomorphous replacements in silicates – ortho, meta and pyro silicates – one dimensional, two dimensional and three-dimensional silicates. Structure of silicones, Structural and bonding features of B-N, S-N and P-N compounds; Poly acids – types, examples and structures; Borane cluster: Structural features of closo, nido, arachano and klado; carboranes, hetero and metalloboranes; Wade's rule to predict the structure of borane cluster; main group clusters –zintl ions and mno rule.	15
II	UNIT-II: Solid state chemistry – I: Ionic crystals: Packing of ions in simple, hexagonal and cubic close packing, voids in crystal lattice, Radius ratio, Crystal systems and Bravis lattices, Symmetry operations in crystals, glide planes and screw axis; point group and space group; Solid state energetics: Lattice energy – Born-Lande equation - Kapustinski equation, Madelung constant.	15
III	UNIT-III: Solid state chemistry – II: Structural features of the crystal systems: Rock salt, zinc blende & wurtzite, fluorite and antifluorite, rutile and anatase, cadmium iodide and nickel arsenide; Spinels -normal and inverse types and perovskite structures. Crystal Growth methods: From melt and solution (hydrothermal, sol-gel methods) – principles and examples.	15
IV	UNIT-IV: Techniques in solid state chemistry: X-ray diffraction technique: Bragg's law, Powder diffraction method – Principle and Instrumentation; Interpretation of XRD data – JCPDS files, Phase purity, Scherrer formula, lattice constants calculation; Systematic absence of reflections; Electron diffraction technique – principle, instrumentation and application. Electron microscopy – difference between optical and electron microscopy, theory, principle, instrumentation, sampling methods and applications of SEM and TEM.	15
V	UNIT-V: Band theory and defects in solids Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property, laser	15

and phosphors; Linear defects and its effects due to dislocations.

	Course Outcomes							
Course	On completion of this course, Students will be able							
Outcomes								
CO1	Predict the geometry of main group compounds and clusters.							
CO2	Explain about the packing of ions in crystals and apply the radius ratio rule to							
COZ	predict the coordination number of cations.							
CO3	Understand the various types of ionic crystal systems and analyze their structural							
COS	features.							
CO4	Explain the crystal growth methods.							
CO5	To understand the principles of diffraction techniques and microscopic techniques.							

- 01. A R West, Solid state Chemistry and its applications, 2ndEdition (Students Edition), John Wiley & Sons Ltd., 2014.
- 02. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing House, 2001.
- 03. L Smart, E Moore, Solid State Chemistry An Introduction, 4th Edition, CRC Press, 2012.
- 04. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders company: Philadelphia, 1977.
- 05. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ed.; Harper and Row: NewYork, 1983.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic Chemistry, 3rd Ed, 1994.
- 2. R J D Tilley, Understanding Solids The Science of Materials, 2nd edition, Wiley Publication, 2013.
- 3. C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2nd Edition, Cambridge University Press, 199.
- 4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982.
- 5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry; 3rd ed.; Oxford University Press: London, 2001.

Web Resources

 $01.https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-fall-2018/video_galleries/lecture-videos/\\$

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15

Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	3.0	5.0	5.0	2.0	2.0

Title of the	e Course	ORGANIC CHEMISTRY PRACTICAL								
Catagory	Core - 3	Year	I	Credits	4	C	Course Code		232204103	
Category	Cole - 3	Semeste	r I	Credits	4	C				
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Exteri	nal	Total	
per week		-	1	4	5	25	75		100	
_			Loomning	· Objective						

- \varkappa To analyze the separated organic components systematically and derivatize them suitably.

	construct suitable experimental setup for the organic preparations involve experiment different purification and drying techniques for the compour	-									
UNIT	Details	No. of Periods for the Unit									
I	Separation and analysis:										
	A. Two component mixtures.										
	Three component mixtures.										
II	Estimations:										
	a) Estimation of Phenol (bromination)										
	b) Estimation of Aniline (bromination)										
	c) Estimation of Ethyl methyl ketone (iodimetry) d) Estimation of Glucose (redox)										
	e) Estimation of Ascorbic acid (iodimetry) f) Estimation of Aromatic nitro groups (reduction)										
	g) Estimation of Afoniatic Intro groups (reduction)										
	h) Estimation of Gryenic (acidinetry) h) Estimation of Formalin (iodimetry)										
	i) Estimation of Formann (rotalineary) i) Estimation of Acetyl group in ester (alkalimetry)										
	j) Estimation of Hydroxyl group (acetylation)										
	k) Estimation of Amino group (acetylation)										
III	Two stage preparations:										
	a) <i>p</i> -Bromoacetanilide from aniline										
	b) <i>p</i> -Nitroaniline from acetanilide										
	c) 1,3,5-Tribromobenzene from aniline										
	d) Acetyl salicyclic acid from methyl salicylate										
	e) Benzilic acid from benzoin										
	f) <i>m</i> -Nitroaniline from nitrobenzene										
	g) m-Nitrobenzoic acid from methyl benzoate										
	Course Outcomes										
Course	On completion of this course, students will;										
Outcom											
CO1	To recall the basic principles of organic separation, qualitative	e analysis and									
	preparation.										
CO2	To explain the method of separation and analysis of separated organic mixtures and										
		convert them as derivatives by suitable preparation method.									
CO3	To determine the characteristics of separation of organic compou	nds by various									

	chemical reactions.
CO4	To develop strategies to separate, analyze and prepare organic compounds.
CO5	To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

- 1. A R West, Solid state Chemistry and its applications, 2ndEdition (Students Edition), John Wiley & Sons Ltd., 2014.
- 2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing House, 2001.
- 3. L Smart, E Moore, Solid State Chemistry An Introduction, 4th Edition, CRC Press, 2012.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic Chemistry, 3rd Ed, 1994.
- 2. R J D Tilley, Understanding Solids The Science of Materials, 2nd edition, Wiley Publication, 2013.
- 3. C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2nd Edition, Cambridge University Press, 199.

Web Resources

01. https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-fall-2018/video_galleries/lecture-videos/

Mapping with Programme Outcomes:

				<u> </u>						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	Title of the Course PHARMACEUTICAL CHEMISTRY										
	1	X 7	Т	<u> </u>				T			
Category	EC – I	Year Semester	r I	Credits	3		ourse ode	23	2204104		
	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	E	xternal	Total		
per week		4	1		5	25		75	100		
		•	Lear	ning Objec	tives		1				
To understand the advanced concepts of pharmaceutical chemistry.											
Æ 10	familiarize on th	ie arug aos	age and it	is structurai	activitie	S			No. of		
UNIT			I	Details					Periods for the Unit		
I	UNIT-I: Physica	al propert	ies in Ph	armaceutic	als: Phy	sical p	ropertie	s of drug			
				efractive i							
	formula, import			-				-			
	activity\rotation-										
	of rotation, spe Dielectric consta										
	determination. R						_		15		
	Applications, con		-	•							
	Specific, Reduce										
	system- Plastic										
	measurements-	selection	of viscon	neter for N	Vewtonia	n and	l non-N	ewtonian			
II	system. UNIT-II: Isoto j	nia Diluti	on onals	gige princi	ala and	annlia	nations	Moutron			
11	activation analy										
	counters: Body										
	various types of								15		
	therapeutics, for										
	drug action. Phy				•	artitio	n coeffic	eient, (b)			
TTT	solubility (c) surf					T., 4	14:	4 - 1			
III	UNIT-III: Drug dosage Forms &	_		duct devel y system –							
	Drug Regulation										
	drug nomenclatu							ed for a			
	dosage form, c	lassificatio	on of do	sage forms	s. Drug	dosa	ge and	product	15		
	development. Int	troduction	to drug of	dosage Forn	ns & Di	rug De	elivery s	ystem –			
	Definition of Co			ig Regulatio							
	formularies, sour							ation of			
IV	drugs products, n UNIT-IV: Deve							owed in			
1 4	drug design, the	_		_		-					
	compounds. St										
	bioactivity, reso	onance, ii	nductive	effect, iso	terism,	bioisc	sterism,	spatial			
	considerations, b	-		-		_	-		15		
	drug activity, occ										
	structure activit	-	_		_		_	_			
	interactions, the parameters, lipor		•	-		_	•				
	steric parameters			-							
	pierre parameters	, cheration	paramete	is, redux po	nemai, i	nuical	or-varia	uics.			

UNIT-V: Computers in Pharmaceutical Chemistry: Need of computers for chemistry. Computers for Analytical Chemists-Introduction to computers: Organization of computers, CPU, Computer memory, I/O devices, information storage, software components. Application of computers in chemistry: Programming in high level language (C+) to handle various numerical methods in chemistry – least square fit, solution to simultaneous equations, interpolation, extrapolation, data smoothing, numerical differentiation and integrations.

15

	Course Outcomes									
Course Outcomes	On completion of this course, students will be able									
CO1	To identify the suitable drugs for various diseases.									
CO2	To apply the principles of various drug action and drug design.									
CO3	To acquire the knowledge on product development based on SAR.									
CO4	To apply the knowledge on applications of computers in chemistry.									
CO5	To synthesize new drugs after understanding the concepts SAR.									

Text Books (Latest Editions)

- 1. Physical Chemistry- Bahl and Tuli.
- 2. Text Book of Physical Pharmaceutics, IInd edition, Vallabh Prakashan-. C.V.S. Subramanyam.
- 3. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R Chatwal, Himalaya Publishing house.
- 4. Instrumental method of Analysis: Hubert H, Willard, 7th edition.
- 5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S. Chand & company Ltd. Pharmaceutical Chemistry by Dr. S. Lakshmi, Sultan chand & Sons.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 01. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.
- 02. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate prakashan., 2 nd edition, New age international (P) limited, New Delhi.
- 03. Physical Pharmacy and Pharmaceutical Sciences by Martins, Patrick J. Sinko, Lippincott. William and Wilkins.
- 04. Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter, CBS Publisher Ltd.
- 05. Ansels pharmaceutical Dosage forms and Drug Delivery System by Allen Popvich and Ansel, Indian edition-B.I. Publication Pvt. Ltd.

Web Resources

https://www.ncbi.nlm.nih.gov/books/NBK482447/

https://training.seer.cancer.gov/treatment/chemotherapy/types.html

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15

	percentage of ntribution to F	Pos	3.0		3.0		3.0	3.0		3.0		
Title of the			TAM C	ERI	ALS A	ND	NANO	TEC	HNOL	OGY		
Category	EC - 1	Year Semes	ter	I I	Cred	its	3		ourse ode	23	232204105	
Instruction per week	nal Hours	Lectur	e Tut	orial	Lab Practi		Total	CIA	Exter	nal	Total	
•		4 1 5 25 75 Learning Objectives									100	
(T								. 1				
	nderstand the conderstand the v											
	nderstand the v nderstand the a		_									
	orrelate the cha									ew te	chnologies	
	esign synthetic									cw ici	emiologics.	
	esign symmetre	1041051			-	* 110	· · · · · · · · · · · · · · · · · · ·	11410111	.13.	No.	of Periods	
UNIT				Deta	ils						r the Unit	
I U	NIT-I: Introd	luction	of n	anon	naterials	a	nd nar	notechi	nologies	,		
	troduction-role								•			
	ottom –Up, To	•					-				15	
	anostructures, B	_					_		•			
	nanomaterial				nanos	sciei	nce. A	pplicat	ions o	Ī		
	anomaterials and NIT-II: Bondi				the na	om	aterials	Dredic	eting th	2		
T na na S s	ype of Bond anoparticles, Su ynthesis- Physic scharge, laser a	ing in orfaces of cal and	a Sof Mate chemics	ubsta rials, al me	nce cr Nanopethods -	ysta artic iner	l struc ele Size et gas co	ture. and Pr ndensa	Metalli operties tion, ar	c	15	
ty M	pes, metallo of licrowave assist NIT-III: Mech	organic, ted and	plasm electroc	a en	hanced, ical syn	an hesi	d low-p is.	oressur	e CVD			
m na na	echanical prop anomaterials, anomaterials Na	erties. 7 adhesic anoparti	Fechniq on and cles: go	ues l fi old ai	to study iction, and silve	me the r, m	echanica ermal	l prop proper	erties o	f f	15	
C el pl Si se in	oxide and alumina - synthesis and properties. UNIT-IV: Electrical properties, Conductivity and Resistivity, Classification of Materials based on Conductivity, magnetic properties, electronic properties of materials. Classification of magnetic phenomena. Semiconductor materials – classification-Ge, Si, GaAs, SiC, GaN, GaP, CdS,PbS. Identification of materials as p and n –type semiconductor-Hall effect - quantum and anomalous, Hall voltage - interpretation of charge carrier density. Applications of semiconductors: p-n junction as transistors and rectifiers, photovoltaic							15				
and photogalvanic cell. V UNIT-V: Nano thin films, nanocomposites. Application of nanoparticles in different fields. Core-shell nanoparticles - types, synthesis, and properties. Nanocomposites - metal-, ceramic- and polymer-matrix composites-applications. Characterization — SEM, TEM and AFM - principle, instrumentation and applications. Course Outcomes									15			
Course	0			- A	dant- '	11 1	. ak1.					
Outcomes	On completion	on of this course, students will be able										
CO1	To explain m											
CO2	To relate the material.	unique	properti	es of	nanom	ateri	als to re	duce d	imensio	nality	of the	

CO3	To describe tools for properties of nanostructures.
CO4	To discuss applications of nanomaterials.
CO5	CO5 : To understand the health and safety related to nanomaterial.

- 1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016.
- 2. Arumugam, Materials Science, Anuradha Publications, 2007.
- 3. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010
- 4. Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012.
- 5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016.
- 2. Arumugam, Materials Science, Anuradha Publications, 2007.
- 3. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010
- 4. Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012.
- 5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.

Web Resources

- 1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
- 2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Trupping with 11081 annual Specific Statesmest										
CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	3	3	3	3					
CO2	3	3	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
Weightage	15	15	15	15	15					
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0					

Title of the Course		ELECTRO CHEMISTRY							
Cotogory	EC - II	Year	I	Credits	2	C	ourse	232204106	
Category		Semeste	r I	Credits	3	C	ode		32204100
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Exteri	nal	Total
		4	1		5	25	75		100

- ∠ To understand the behavior of electrolytes in terms of conductance, ionic atmosphere, interactions.
- ✓ To familiarize the structure of the electrical double layer of different models.

UNIT	Details	No. of Periods for the Unit
I	Ionics: Arrhenius theory -limitations, van't Hoff factor and its relation	101 the emt
	to colligative properties. Deviation from ideal behavior. Ionic activity,	
	mean ionic activity and mean ionic activity coefficient-concept of ionic	
	strength, Debye Huckel theory of strong electrolytes, activity	
	coefficient of strong electrolytes Determination of activity coefficient	
	ion solvent and ion-ion interactions. Born equation. Debye-Huckel	
	Bjerrum model. Derivation of Debye-Huckel limiting law at	15
	appreciable concentration of electrolytes modifications and	
	applications. Electrolytic conduction-Debye-Huckel Onsager treatment	
	of strong electrolyte-qualitative and quantitative verification and	
	limitations. Evidence for ionic atmosphere. Ion association and triple	
	ion formations.	
II	Electrode-electrolyte interface: Interfacial phenomena -Evidences for	
	electrical double layer, polarizable and non-polarizable interfaces,	
	Electrocapillary phenomena - Lippmann equation electro capillary	
	curves. Electro-kinetic phenomena electro-osmosis, electrophoresis,	
	streaming and sedimentation potentials, colloidal and poly electrolytes.	15
	Structure of double layer: Helmholtz -Perrin, Guoy- Chapman and	
	Stern models of electrical double layer. Zeta potential and potential at	
	zero charge. Applications and limitations.	
III	Electrodics of Elementary Electrode Reactions: Behavior of	
	electrodes: Standard electrodes and electrodes at equilibrium. Anodic	1.7
	and Cathodic currents, condition for the discharge of ions. Nernst	15
	equation, polarizable and non-polarizable electrodes. Model of three	

ele	ectrode system, over potential. Rate of electro chemical reactions:							
Ra	tes of simple elementary reactions. Butler-Volmer equation-							
	nificance of exchange current density, net current density and							
	mmetry factor. Low and high field approximations. symmetry factor							
	d transfer coefficient Tafel equations and Tafel plots.							
	ectrodics of Multistep Multi Electron System: Rates of multi-step							
	ectrode reactions, Butler - Volmer equation for a multi-step reaction.							
	te determining step, electrode polarization and depolarization.							
	ansfer coefficients, its significance and determination, Stoichiometric							
	number. Electro-chemical reaction mechanisms-rate expressions, order,							
	d surface coverage. Reduction of I ³⁻ , Fe ²⁺ , and dissolution of Fe to							
Fe	²⁺ . Overvoltage - Chemical and electro chemical, Phase, activation							
and	d concentration over potentials. Evolution of oxygen and hydrogen at							
dif	ferent pH. Pourbiax and Evan's diagrams.							
V Co	ncentration Polarization, Batteries and Fuel cells: Modes of							
Tra	ansport of electro active species - Diffusion, migration and							
hy	drodynamic modes. Role of supporting electrolytes. Polarography-	y-						
pri	nciple and applications. Principle of square wave polarography.							
Су	clic voltammetry- anodic and cathodic stripping voltammetry and							
dif	ferential pulse voltammetry. Sodium and lithium-ion batteries and	15						
rec	lox flow batteries. Mechanism of charge storage: conversion and							
alle	oying. Capacitors- mechanism of energy storage, charging at							
coi	nstant current and constant voltage. Energy production systems: Fuel							
Ce	lls: classification, alkaline fuel cells, phosphoric acid fuel cells, high							
	nperature fuel cells.							
	Course Outcomes							
Course	On completion of this course, students will be able							
Outcomes	To understand the behaviour of electrolytes in solution and compare	the etructures						
CO1	of electrical double layer of different models.	the structures						
CO2	To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel							
CO3	equations To study different thermodynamic mechanism of corrosion,							
CO4	To discuss the theories of electrolytes, electrical double layer, e	electrodics and						
	activity coefficient of electrolytes	ma aharriarr						
CO5	To have knowledge on storage devices and electrochemical reaction reactions Text Books (Latest Editions)	nechanism.						
1. D. R.	Crow, Principles and applications of electrochemistry, 4thedition	, Chapman &						

- D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014.
- 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011.
- 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008.
- 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan,

Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai, 2007.

5. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008.
- 2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008.
- 3. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New York, 2010.
- 4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
- 5. K.L. Kapoor, A <u>Text book of Physical chemistry</u>, volume-3, Macmillan, 2001.

Web Resources

1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos					

Title of the Course		MOLECULAR SPECTROSCOPY								
Cotogowy	EC - II	Year	I	Credits	3	Course		232204107		
Category	EC - II	Semeste	r I	Credits	3	C	ode 2		34404107	
Instruction per week	Instructional Hours		Tutorial	Lab Practice	Total	CIA	Exteri	nal	Total	
per week		4	1		5	25	25 75		100	
	Learning Objectives									

- To understand the influence of rotation and vibrations on the spectra of the polyatomic molecules.
- To study the principle of Raman spectroscopy, ESR spectroscopy, EPR spectroscopy and fragmentation patterns in Mass spectroscopy.
- Zero To highlight the significance of Franck-Condon principle to interpret the selection rule, intensity and types of electronic transitions.
- To interpret the first and second order NMR spectra in terms of splitting and coupling patterns using correlation techniques such as COSY, HETCOR, NOESY.

UNIT	Details	No. of Periods for the Unit
I	UNIT-I: Rotational and Raman Spectroscopy: Rotational spectra of diatomic and polyatomic molecules. Intensities of rotational spectral lines, effect of isotopic substitution. Non-rigid rotators. Classical theory of the Raman effect, polarizability as a tensor, polarizability ellipsoids, quantum theory of the Raman effect, Pure rotational Raman spectra of linear and asymmetric top molecules, Stokes and anti-Stokes lines. Vibrational Raman spectra, Raman activity of vibrations, rule of mutual exclusion, rotational fine structure-O and S branches, Polarization of Raman scattered photons.	15
II	UNIT-II: Vibrational Spectroscopy: Vibrations of molecules, harmonic and anharmonic oscillators- vibrational energy expression, energy level diagram, vibrational wave functions and their symmetry, selection rules, expression for the energies of spectral lines, computation of intensities, hot bands, effect of isotopic substitution. Diatomic vibrating rotor, vibrational-rotational spectra of diatomic molecules, P, R branches, breakdown of the Born-Oppenheimer approximation. Vibrations of polyatomic molecules – symmetry properties, overtone and combination frequencies. Influence of rotation on vibrational spectra of polyatomic molecule, P, Q, R branches, parallel and perpendicular vibrations of linear and symmetric top molecules.	15
III	UNIT-III: Electronic spectroscopy: Electronic Spectroscopy: Electronic spectroscopy of diatomic molecules, Frank-Condon principle, dissociation and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and their selection rules. Photoelectron Spectroscopy: Basic principles, photoelectron spectra of simple molecules, Xray photoelectron spectroscopy (XPS). Lasers: Laser action, population inversion, properties of laser radiation, examples of simple laser systems.	15

IV	UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and deshielding. Spin systems: First order and second order coupling of AB systems, Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions - AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities. 13CNMR and structural correlations, Satellites. Brief introduction to 2D NMR – COSY, NOESY. Introduction to 31P, 19F NMR. ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A), origin of hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g-tensors, zero/non-zero field splitting, Kramer's degeneracy, application to transition metal complexes (having one to five unpaired electrons) including biological molecules and inorganic free radicals. ESR spectra of magnetically dilute samples.	15
V	UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum. EPR spectra of anisotropic systems - anisotropy in g-value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to organic and inorganic systems. Structural elucidation of organic compounds by combined spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds.	15

	Course Outcomes
Course	On completion of this course, students will;
Outcomes	
CO1	To understand the importance of rotational and Raman spectroscopy.
CO2	To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.
CO3	To evaluate different electronic spectra of simple molecules using electronic spectroscopy.
CO4	To outline the NMR, ¹³ C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹ P, ¹⁹ F NMR and ESR spectroscopic techniques.
CO5	To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy

- 1. C. N. Banwell and E. M. McCash, *Fundamentals of Molecular Spectroscopy*, 4th Ed., Tata McGraw Hill, New Delhi, 2000.
- 2. R. M. Silverstein and F. X. Webster, *Spectroscopic Identification of Organic Compounds*, 6th Ed., John Wiley & Sons, New York, 2003.
- 3. W. Kemp, Applications of Spectroscopy, English Language Book Society, 1987.
- 4. D. H. Williams and I. Fleming, *Spectroscopic Methods in Organic Chemistry*, 4th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988.
- 5. R. S. Drago, *Physical Methods in Chemistry*; Saunders: Philadelphia, 1992.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. P.W. Atkins and J. de Paula, *Physical Chemistry*, 7th Ed., Oxford University Press, Oxford, 2002.
- 2. I. N. Levine, *Molecular Spectroscopy*, John Wiley & Sons, New York, 1974.
- 3. A. Rahman, *Nuclear Magnetic Resonance-Basic Principles*, Springer-Verlag, New York, 1986.
- 4. K. Nakamoto, *Infrared and Raman Spectra of Inorganic and coordination Compounds*, PartB: 5th ed., John Wiley& Sons Inc., New York, 1997.
- 5. J. A. Weil, J. R. Bolton and J. E. Wertz, *Electron Paramagnetic Resonance*; Wiley Interscience, 1994.

Web Resources

https://onlinecourses.nptel.ac.in/noc20_cy08/preview2.

https://www.digimat.in/nptel/courses/video/104106122/L14.html

Mapping with Programme Outcomes:

					- 0					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of th	e Cours	e	PREPA	RATION	OF CON	SUME	R PF	RODUCT	`S -	LAB
	T		Year			1				
Category	SEC	SEC - I		I	Credits	2		Course	2	32204108
			Semeste	r I			(Code		
Instruction per week	Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Exteri	nal	Total
Por Wood				1	2	3	25	75		100
Prerequi	isites		Basic c	oncepts	of organic	chem:	istry	7		
				Learning	g Objective	S				
🗷 To un	derstand	the cor	ncept of P	reparation	of useful c	onsumer	proc	ducts.		
	velop an	alytical	skill in t	he handli	ng of chen	nical rea	agent	s forprepa	arati	on.
	periment	differen	nt purifica	purification and drying techniques for thecompound processing.						
UNIT				Deta	ils					
	Preparat	ion of f	ollowing o	consumer	products:					
	1.	Prepara	ation of S	hampoo						
	2.	Prepara	ation of So	oap						
	3.	Prepara	ation of Pl	henoyls						
	4.	Prepara	aration of sanitizers							
	5.	Prepara	ation of So	cented oils	3					
	6.	Prepara	ation of D	ish wash I	Liquid					

Course Outcomes									
Course Outcomes	On completion of this course, students will be able;								
CO1	To recall the basic principles of consumer products, qualitative analysis and preparation.								
CO2	To explain the method of separation and analysis of separated by suitable preparation method.								

Text Books (Latest Editions)
Creative Cosmetics Lab – Thames and Kosmos
Web Resources
1. https://www.thamesandkosmos.com/manuals/full/646518_Creative_Co
amorting Lab Mannal adf

smetics_Lab_Manual.pdf

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium , 1 - Low Mapping with Programme Specific Outcomes:

wiapping with Frogramme Specific Outcomes.									
CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	3	3	3	3				
CO2	3	3	3	3	3				
CO3	3	3	3	3	3				
CO4	3	3	3	3	3				
CO5	3	3	3	3	3				
Weightage	15	15	15	15	15				

Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course		CHEMISTRY IN CONSUMER PRODUCTS							
Category	AECC - I	Year	I	Credits	2	C	ourse	232204109	
Category	AECC - I	Semeste	r I	Credits	2	C	ode		
Instructional Hours per week		Lecture	Lecture Tutorial Lab Practice Total CIA External						Total
		2	-		2	25	75 100		
Prerequis	sites	Basic knowledge of spectroscopy							

- ✓ To understand the preparation of soap and mechanism of its action.
- ✓ To study the principle of surface active agent and mechanism of action of detergent.
- ✓ To highlight the significance of shampoo and its classification.

UNIT	Details	No. of Periods for the Unit
Ι	Soaps: Saponification of oils and fats – Manufacture of soaps formulation of toilet soaps, Herbal soaps, Mechanism of action of soap.	6
II	Detergents: Surface active agents – classification of surface active agents – Different ingredients in the formulation of detergent powder and soaps – Mechanism of action of detergents – comparison of soaps and detergents.	6
III	Shampoos: Manufacture of Sodium Lauryl Sulfate and SLS free kadhi product Johnson baby soap and shampoos. Different kind of shampoo – anti dandruff, herbal and baby shampoo.	6
IV	Face cream and Nail Polish: Ingredients – functions – different types of snows and face creams. Nail polishes – Nail polish preparation – Nail Polish removers.	
V	Perfumes and falvours: Definition – Manufacture of perfume and flavouring materials – production of Natural perfume and flower perfume – fruit flavours – artificial flavours.	

	Course Outcomes							
Course Outcomes	On completion of this course, students will be able;							
CO1	To understand the importance using of soap.							
CO2	To apply the cleaning action of soap and detergent.							
CO3 To evaluate different type of Shampoo.								
CO4 To outline the preparation and use of face cream and nail polish.								
CO5	To develop the knowledge on principle, preparation of perfumes and flavors.							
	Text Books (Latest Editions)							
1. Gob	al Rao S., Outlines of Chemical technology, Affiliated East West Press, 1998.							
2. Kafa	ro, Wasteless Chemical processing, Mir Publishers, 1995							
	References Books							
(1	(Latest editions, and the style as given below must be strictly adhered to)							
01. Saw	yer W., Experimental cosmetics, Dover Publishers, New York, 2000.							
02. Shar	ma B.K, Industrial Chemistry, Goel Publishing house,1995.							

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

S-Strong; M-Medium; L-Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of CourseContribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	ORGAN	IC REAC	CTION ME	CHAN	ISM -	II		
Category	Core - 4	Year Semester	I II	Credits	4	C	2322	204201	
Instructi per week	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total
		4	1		5	25	75		100
- / To	yandanatan di the c			g Objective		1	ما المناسب	2424227	1:
	understand the coupound	_	aromatici	ty in benzei	noia, no	n-benz	enoia, n	eterocy	ciic ar
	understand the		m involv	ed in vario	ous type	es of	organic	reactio	ons wi
	idences.				71		υ		
	understand the a								
	correlate the read								
∠ To	design synthetic	routes for	synthetica	ally used or	ganıc rea	actions	•	N.T	(a. a.f.
UNIT			Deta	ils				Peri	o. of ods fo e Unit
I	UNIT-I: Elimin	ation and	Free Rad	lical React	ions: M	echani	sms: F2		
	E1, and E1cB m								
	the double bond		-						
	substrate, attacki			=		-			
	of eliminations	_		-			•		
	Long lived and s	•	•	•					15
	and photochemi					•			
	characteristics of					•			
		merization			genatio		aromatic		
	substitutions, re				•				
	aromatic substrat	_		•	-		-		
II					<u> </u>				
	UNIT-II: Oxidatioi	n and Redu	ction Read	ctions: Mech	nanisms:	Direct	electron	,	
	transfer, hydride	transfer,	hydrogen	transfer, d	displacer	nent, i	addition-	=	
	elimination, oxid	ative and	reductive	coupling re	actions.	Mech	anism of	<u>.</u>	
	oxidation reactio	ns: Dehyd	rogenatio	n by quino	nes, sele	enium	dioxides,		
	ferricyanide, me	ercuric ad	etate led	ad tetraac	etate,	perma	nganate,		
	manganese dio	xide, osn	nium tet	roxide, ox	idation	of s	aturatea	<i>'</i>	
	hydrocarbons, a	lkyl group	s, alcohol	s, halides d	and am	ines. R	Reactions		
	involving cleavag	ge of C-C k	onds - cle	eavage of a	double b	onds,	oxidative	,	15
	decarboxylation,								
	pyridine, DMSO	•			•				
	oxidation, dime	•	•		•		•		
	DCCD). Mechanis	,					•		
	Rosenmund, re	-							
	McFadyen-Stevei		uction,	Homogene			genation,		
	,		,	-		, -			
	Hydroboration w	itii tytiit s	istems, IVI	rv una Bou	veuuit-B	iunc re	auction.		
III	UNIT-III: Rear	rrangeme	nts: Rear	rangements	to ele	ctron	deficient	-	
	carbon: Pinacol	-pinacolon	e and se	emi-pinacol	one rea	ırrange	ments -		15
	applications and	d stereoc	hemistry,	Wagner-N	Meerwei	n, De	emjanov,		

Dienone-phenol, Baker-Venkataraman, Benzilic acid and Wolf rearrangements. Rearrangements to electron deficient nitroger Hofmann, Curtius, Schmidt, Lossen, Beckmann and abnorma Beckmann rearrangements. Rearrangements to electron deficier oxygen: Baeyer-Villiger oxidation and Dakin rearrangements Rearrangements to electron rich atom: Favorskii, Quasi-Favorski Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Phot Fries rearrangement. Intramolecular rearrangements — Claiser abnormal Claisen, Cope, oxy-Cope Benzidine rearrangements.	a: al at s. i,
UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclismechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-hetero atom multiple bonds: Mannich reaction acids, esters, nitrites, addition of Grignard reagents, Wittig reaction Prins reaction. Stereochemical aspects of addition reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of Grignard reagents organozinc and organolithium reagents to carbonyl and unsaturate carbonyl compounds. Mechanism of condensation reactions involving enolates—Stobbe reactions. Hydrolysis of esters and amides ammonolysis of esters.	g c d d o o o o o o o o
V UNIT-V: Reagents and Modern Synthetic Reactions: Lithium diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic acid (mace) CPBA), Dimethyl aminiopyridine (DMAP), n-Bu ₃ SnD, Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU) Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid (TFA) Tetramethyl piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu, Diethyl maleate (DEM) Copper diacetylacetonate (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC), Meisenheime complex. Suzuki coupling, Heck reaction, Negishi reaction, Baylis Hillman reaction.	n

	Course Outcomes								
Course	On completion of this course, students will be able;								
Outcomes									
CO1	To recall the basic principles of aromaticity of organic and heterocyclic compounds.								
CO2	To understand the mechanism of various types of organic reactions.								
CO3	To predict the suitable reagents for the conversion of selective organic compounds.								
CO4	To correlate the principles of substitution, elimination, and addition reactions.								
CO5	To design new routes to synthesis organic compounds.								
	Text Books (Latest Editions)								
1. J. Ma	rch and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons.								

2001.

- 2. E. S. Gould, *Mechanism and Structure in Organic Chemistry*, Holt, Rinehart and Winston Inc., 1959.
- 3. P. S. Kalsi, *Stereochemistry of carbon compounds*, 8thedn, New Age International Publishers, 2015.
- 4. P. Y.Bruice, *Organic Chemistry*, 7thedn.,Prentice Hall, 2013.
- 5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee *Organic Chemistry*, 7th edn., Pearson Education, 2010.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. S. H. Pine, *Organic Chemistry*, 5thedn, McGraw Hill International Editionn, 1987.
- 2. L. F. Fieser and M. Fieser, *Organic Chemistry*, Asia Publishing House, Bombay, 2000.
- 3. E.S. Gould, *Mechanism and Structure in Organic Chemistry*, Holt, Rinehart and Winston Inc., 1959.
- 4. T. L. Gilchrist, *Heterocyclic Chemistry*, Longman Press, 1989.
- 5. J. A. Joule and K. Mills, *Heterocyclic Chemistry*, 4thed., John-Wiley, 2010.

Web Resources

1.https://sites.google.com/site/chemistryebookscollection02/home/organic-chemistry/organic 2. https://www.organic-chemistry.org/

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	e Course	PHYSICAL CHEMISTRY - I								
Cotogowy	Core - 5	Year	I	Credits	7 1:4 1		ourse	,	232204202	
Category	Core - 3	Semeste	r II	Credits	4	Co	Code			
	Instructional Hours per week		Tutorial	Lab Practice	Total	CIA	Exterr	nal	Total	
per week			1		5	25	75		100	

- ✓ To understand the classical and statistical approach of the functions
- Z To correlate the theories of reaction rates for the evaluation of thermodynamic parameters.
- ✓ To study the mechanism and kinetics of reactions.

UNIT	Details	No. of Periods for the Unit
Ι	UNIT-I: Classical Thermodynamics: Partial molar properties-Chemical	
	potential, Gibb's- Duhem equation-binary and ternary systems.	
	Determination of partial molar quantities. Thermodynamics of real gases -	
	Fugacity- determination of fugacity by graphical and equation of state	
	methods-dependence of temperature, pressure and composition.	15
	Thermodynamics of ideal and non-ideal binary mixtures, Duhem - Margulus	
	equation applications of ideal and non-ideal mixtures. Activity and activity	
	coefficients-standard states - determination-vapour pressure, EMF and	
	freezing point methods.	
II	UNIT-II: Statistical thermodynamics: Introduction of statistical	
	thermodynamics concepts of thermodynamic and mathematical	
	probabilities-distribution of distinguishable and non-distinguishable	
	particles. Assemblies, ensembles, canonical particles. Maxwell - Boltzmann,	
	Fermi Dirac & Bose-Einstein Statistics- comparison and applications.	
	Partition functions-evaluation of translational, vibrational and rotational	
	partition functions for monoatomic, diatomic and polyatomic ideal gases.	15
	Thermodynamic functions in terms of partition functions-calculation of	
	equilibrium constants. Statistical approach to Thermodynamic properties:	
	pressure, internal energy, entropy, enthalpy, Gibb's function, Helmholtz	
	function residual entropy, equilibrium constants and equipartition principle.	
	Heat capacity of mono and di atomic gases-ortho and para hydrogen. Heat	
	capacity of solids-Einstein and Debye models.	
III	UNIT-III: Irreversible Thermodynamics: Theories of conservation of	
	mass and energy entropy production in open systems by heat, matter and	
	current flow, force and flux concepts. Onsager theory-validity and	15
	verification- Onsager reciprocal relationships. Electro kinetic and thermo	

mech	anical effects-Application of irreversible thermodynamics to biological								
syste	ms.								
IV UNIT	T-IV: Kinetics of Reactions: Theories of reactions-effect of								
tempe	erature on reaction rates, collision theory of reaction rates,								
Unim	olecular reactions -Lindeman and Christiansen hypothesis- molecular								
beam	s, collision cross sections, effectiveness of collisions, Potential energy								
surfac	surfaces. Transition state theory-evaluation of thermodynamic parameters of								
activa	ation-applications of ARRT to reactions between atoms and molecules,	15							
time	and true order-kinetic parameter evaluation. Factors determine the								
reacti	on rates in solution - primary salt effect and secondary salt effect,								
Home	ogeneous catalysis- acid- base catalysis-mechanism of acid base								
cataly	zed reactions-Bronsted catalysis law, enzyme catalysis-Michelis-								
Ment	on catalysis.								
	T-V: Kinetics of complex and fast reactions: Kinetics of complex								
	ons, reversible reactions, consecutive reactions, parallel reactions,								
chain	chain reactions. Chain reactions-chain length, kinetics of H ₂ - Cl ₂ & H ₂ -								
I	_								
	eactions (Thermal and Photochemical reactions) - Rice Herzfeld								
mech	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and	15							
mech press	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped	15							
mech press flow	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped flash photolysis methods and pulse radiolysis. Kinetics of	15							
mech press flow polyn	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped flash photolysis methods and pulse radiolysis. Kinetics of merization-free radical, cationic, anionic polymerization - Poly	15							
mech press flow polyn	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped flash photolysis methods and pulse radiolysis. Kinetics of nerization-free radical, cationic, anionic polymerization - Poly ensation.	15							
mech press flow polyr conde	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped flash photolysis methods and pulse radiolysis. Kinetics of merization-free radical, cationic, anionic polymerization - Poly	15							
mech press flow polyn	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped flash photolysis methods and pulse radiolysis. Kinetics of nerization-free radical, cationic, anionic polymerization - Poly ensation.	15							
mech press flow polyr conde	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped flash photolysis methods and pulse radiolysis. Kinetics of nerization-free radical, cationic, anionic polymerization - Polyensation. Course Outcomes	15							
mech press flow polyr conde	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped flash photolysis methods and pulse radiolysis. Kinetics of nerization-free radical, cationic, anionic polymerization - Polyensation. Course Outcomes On completion of this course, students will be able								
mech press flow polyr conde Course Outcomes CO1	eactions (Thermal and Photochemical reactions) - Rice Herzfeld anism. Study of fast reactions-relaxation methods- temperature and are jump methods electric and magnetic field jump methods -stopped flash photolysis methods and pulse radiolysis. Kinetics of nerization-free radical, cationic, anionic polymerization - Poly ensation. Course Outcomes Course Outcomes To explain the classical and statistical concepts of thermodynamics. To compare and correlate the thermodynamic concepts to study the								

To compare the theories of reactions rates and fast reactions.

- 1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986.
- 2. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972.
- 3. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995.
- 4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint 2013.
- 5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, M acmillan India Ltd, Reprint 2011.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.
- 2. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990.

CO₅

- 3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974
- 4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press,1996.
- 5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.

Web Resources

- 01. https://nptel.ac.in/courses/104/103/104103112/
- 02. https://bit.ly/3tL3GdN

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos					

Title of the	e Course	INORGANIC CHEMISTRY PRACTICAL								
Cotogowy	Core - 6	Year	I	Credits	1	C	ourse	2	232204203	
Category		Semester	r II	Credits	4	C	ode	<i>2322</i> 0 4 203		
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
per week		-	1	4	5	25	75		100	

- To understand and enhance the visual observation as an analytical tool for the quantitative estimation of ions.
- Z To recall the principle and theory in preparing standard solutions.
- ✓ To estimate metal ions, present in the given solution accurately without using instruments.

Z To determine the amount of ions, present in a binary mixture accurately.

UNIT	Details	No. of Periods for the Unit								
I	UNIT-I: Analysis of mixture of cations: Analysis of a mixture of four									
	cations containing two common cations and two rare cations. Cations to									
	be tested.									
	Group-I : W, Tl and Pb.									
	Group-II : Se, Te, Mo, Cu, Bi and Cd.									
	Group-III : Tl, Ce, Th, Zr, V, Cr, Fe, Ti and U.									
	Group-IV : Zn, Ni, Co and Mn.									
	Group-V : Ca, Ba and Sr.									
	Group-VI : Li and Mg.									
II	UNIT-II: Preparation of metal complexes: Preparation of inorganic									
	complexes:									
	a. Preparation of tristhioureacopper(I)sulphate									
	b. Preparation of potassium trioxalate chromate(III)									
	. Preparation of tetramminecopper(II) sulphate									
	d. Preparation of Reineck's salt									
	e. Preparation of hexathioureacopper(I) chloridedihydrate									
	f. Preparation of <i>cis</i> -Potassium tri oxalate diaquachromate(III)									
	g. Preparation of sodium trioxalatoferrate(III)									
	h. Preparation of hexathiourealead(II) nitrate									
III	UNIT-III: Complexometric Titration:									
	1. Estimation of zinc, nickel, magnesium, and calcium.									
	2. Estimation of mixture of metal ions-pH control, masking and									
	demasking agents.									
	3. Determination of calcium and lead in a mixture (pH control).									
	4. Determination of manganese in the presence of iron.									
	5. Determination of nickel in the presence of iron.									
	Course Outcomes									
Course	, , ,									
Outcom										
CO1	To identify the anions and cations present in a mixture of salts.									
CO2	To apply the principles of semi micro qualitative analysis to categoriz and basic radicals.	ze acid radicals								
CO3	To acquire the qualitative analytical skills by selecting suitable confirmatory tests									

To choose the appropriate chemical reagents for the detection of anions and

and spot tests.

	cations.
CO5	To synthesize coordination compounds in good quality.

- 01. A. JeyaRajendran, Microanalytical Techniques in Chemistry: Inorganic Qualitative Analysis, United global publishers, 2021.
- 02. V. V. Ramanujam, *Inorganic Semimicro Qualitative Analysis*; 3rded., The National Publishing Company, Chennai, 1974.
- 03. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS, London.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 01. G. Pass, and H. Sutcliffe, *Practical Inorganic Chemistry*; Chapman Hall, 1965.
- 02. W. G. Palmer, Experimental *Inorganic Chemistry*; Cambridge University Press, 1954.

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

Trupping with 1 ogramme specific outcomes.											
CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	3	3	3	3						
CO2	3	3	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
Weightage	15	15	15	15	15						
Weighted percentage of	3.0	3.0	3.0	3.0	3.0						
Course Contribution to Pos											

Title of th	e t Alirce	I MHIDIC'H	NAL CH	FMISTRY	7						
1	Title of the Course MEDICINAL CHEMISTRY										
Category	EC - III	Year Semester	I	Credits	3		ourse ode	23	32204204		
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total		
per week		1	4		5	25	75		100		
	study the chemis	•				eutical	material	S.			
	gain knowledge										
	understand the n					d tract	mant of	diah	atas		
	familiarize with					a treat	ment of c	11206	etes.		
UNIT	dentify and apply the action of various antibiotics. Details								No. of eriods for the Unit		
I U	NIT-I: Introd	uction to	receptor	s: Introduc	tion, ta	rgets,	Agonist,				
a	antagonist, partial agonist. Receptors, Receptor types, Theories of Drug										
	receptor in	nteraction,	Drug	synergism	ı, Dru	g re	sistance,				
p	hysicochemical factors influencing drug action.										
II U	JNIT-II: Antib	oiotics: Int	roduction	n, Targets	of anti	biotics	action,				
c.	lassification of	assification of antibiotics, enzyme-based mechanism of action, SAR									
o	f penicllins ar	nd tetracyc	clins, cli	nical appli	cation	of pe	nicillins,				
C	ephalosporin.Cu	phalosporin.Current trends in antibiotic therapy.									
III U	JNIT-III: Antil	nypertensiv	ve agents	s and diur	etics: C	lassific	cation of	`			
C	ardiovascular a	gents, intro	oduction	to hyperte	nsion, e	tiology	y, types,				
c.	classification of antihypertensive agents, classification and mechanism										
o	f action of diure	tics, Furose	emide, Hy	ydrochlorotl	hiazide,	Amilo	ride.				
IV U	JNIT-IV: Antihypertensive agents and diuretics: Classification of										
C	cardiovascular agents, introduction to hypertension, etiology, types,										
c.	classification of antihypertensive agents, classification and mechanism										
o	f action of diure	tics, Furose	emide, Hy	ydrochlorotl	hiazide,	Amilo	ride.				
VU	V UNIT-V: Analgesics, Antipyretics and Anti-inflammatory Drugs:										
It	Introduction, Mechanism of inflammation, classification and										
n	mechanism of action and paracetamol, Ibuprofen, Diclofenac,										
n	naproxen, indomethacin, phenylbutazone and meperidine. Medicinal										
C	Chemistry of Antidiabetic Agents Introduction, Types of diabetics,										
	Drugs used for the treatment, chemical classification, Mechanism of										
a	action, Treatment of diabetic mellitus. Chemistry of insulin, sulfonyl										
u	rea.										
			Course	Outcomes							
Course Outcomes	On completion	on of this co	urse, stuc	lents will be	e able						
CO1	Predict a drug	gs propertie	s based o	n its structu	ıre.						
CO2	Describe the factors that affect its absorption, distribution, metabolis										
	excretion, and										
CO3	Explain the relationship between drug's chemical structure and its therapeutic properties.										
CO4	Designed to give the knowledge of different theories of drug actions at molecula							t molecular			

	level.
CO5	To identify different targets for the development of new drugs for the treatment of
COS	infectious and GIT.

Text Books (Latest Editions)

- 01. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry,
- 02. Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William, 12th edition, 2011.
 - 03. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition, Oxford University Press, 2013. Jayashree Ghosh, A text book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999,1999 edn.
 - 04. O. LeRoy, Natural and synthetic organic medicinal compounds, Ealemi, 1976.
 - 05. S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New Delhi, 1993, New edn.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 01. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012
- 02. Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010.
- 03. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, John M. Beale Jr and John M. Block, Wolters Kluwer, 2011, 12th edn.
- 04. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS Publishers.1995.
- 05. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of Medical Biochemistry, Hyderabad: Orient Longman. 3rd edition, 2001.

Web Resources

- 1. https://www.ncbi.nlm.nih.gov/books/NBK482447/
- 2. https://training.seer.cancer.gov/treatment/chemotherapy/types.html
- 3. https://www.classcentral.com/course/swayam-medicinal-chemistry-12908

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	e Course	GREEN CHEMISTRY								
Cotogowy	EC - III	Year	I	Credits	3	C	ourse	737704705		
Category		Semeste	r II	Credits	3	C	ode			
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	ıal	Total	
per week		4	1		5	25	75		100	

- To discuss the principles of green chemistry.
- > To propose green solutions for chemical energy storage and conversion
- > Propose green solutions for industrial production of Petroleum and Petrochemicals.
- ➤ Propose solutions for pollution prevention in Industrial chemical and fuel production, Automotive industry and Shipping industries.
- ➤ Propose green solutions for industrial production of Surfactants, Organic and inorganic chemicals.

UNIT	Details	No. of Periods for the Unit					
I	UNIT-I: Introduction- Need for Green Chemistry. Goals of Green Chemistry. Limitations/ of Green Chemistry. Chemical accidents, terminologies, Internationall green chemistry organizations and Twelve principles of Green Chemistry with examples.	15					
II	UNIT-II: Choice of starting materials, reagents, catalysts and solvents in detail, Green chemistry in day today life. Designing green synthesisgreen reagents: dimethyl carbonate. Green solvents: Water,Ionic liquids-criteria, general methods of preparation, effect on organic reaction. Supercritical carbon dioxide- properties, advantages, drawbacks and a few examples of organic reactions in scCO ₂ . Green synthesis-adipic acid and catechol.	15					
III	UNIT-III: Environmental pollution, Green Catalysis-Acid catalysts, Oxidation catalysts, Basic catalysts, Polymer supported catalysts-Poly styrene aluminum chloride, polymeric super acid catalysts, Poly supported photosensitizers.	15					
IV	UNIT-IV: Phase transfer catalysis in green synthesis-oxidation using hydrogen peroxide, crown ethers-esterification, saponification, anhydride formation, Elimination reaction, Displacement reaction. Applications in organic synthesis.	15					
V							
	Course Outcomes						
Cours Outcom	es						
CO1	To recall the basic chemical techniques used in conventional industriand in green innovations.						
CO2	To understand the various techniques used in chemical industries and To compare the advantages of organic reactions assisted by ren						
CO3	sources and non-renewable energy sources.	ewable ellergy					

To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted

CO₄

	organic synthesis.
CO5	To design and synthesize new organic compounds by green methods.
	Text Books (Latest Editions)

- Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry, Anamalaya Publishers, 2005
- 2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7thedition, McGraw-Hill, NewDelhi, 2005.
- 3. J. M. Swan and D. St. C. Black, Organometallics in Organic Synthesis, Chapman Hall, 1974.
- V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special Techniques, Narosa Publishing House, New Delhi, 2001.
- A. K. De, Environmental Chemistry, New Age Publications, 2017.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and Practical, University Press, 1998
- Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
- 3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry, American Chemical Society, Washington, 2000
- 4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry, American Chemical Society Washington, 2002.
- 5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry, Books and Allied (P) Ltd, 2019.

Web Resources

- 01. https://www.organic-chemistry.org/
- 02. https://www.studyorgo.com/summary.php

Mapping with Programme Outcomes:

					- 0					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

Wapping with Frogramme Specific Outcomes.										
CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	3	3	3	3					
CO2	3	3	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
Weightage	15	15	15	15	15					
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0					

Title of the	e Course	BIO INORGANIC CHEMISTRY								
Category	EC - IV	Year	I	Credits	3		ourse 2		32204206	
Category	EC-IV	Semeste	r II	Credits	3	Code		232204200		
Instruction per week	Instructional Hours		Tutorial	Lab Practice	Total	CIA	Exteri	nal	Total	
per week		4	1		5	25	75		100	
Prerequis	sites	Basic knowledge of chemistry								

- Zeta To understand the biological significance of iron, sulpur. To study the toxicity of metals in medicines.

Æ 10	discuss on various metano enzymes properties.	37 0
UNIT	Details	No. of Periods for the Unit
I	Essential trace elements: Selective transport and storage of metal ions: Ferritin, Transferrin and sidorphores; Sodium and potassium transport, Calcium signalling proteins. Metalloenzymes: Zinc enzymes—carboxypeptidase and carbonic anhydrase. Iron enzymes—catalase, peroxidase. Copper enzymes—superoxide dismutase, Plast ocyanin, Ceruloplasmin, Tyrosinase. Coenzymes—Vitamin-B12 coenzymes.	15
II	Transport Proteins: Oxygen carriers -Hemoglobin and myoglobin - Structure and oxygenation Bohr Effect. Binding of CO, NO, CN– to Myoglobin and Hemoglobin. Biological redox system: Cytochromes- Classification, cytochrome a, b and c. Cytochrome P-450. Non-heme oxygen carriers-Hemerythrin and hemocyanin. Iron-sulphur proteins- Rubredoxin and Ferredoxin- Structure and classification. Nitrogen fixation-Introduction, types of nitrogen fixing	15
III	15	
IV	photosystem-II-chlorophylls structure and function. Metals in medicine: Metal Toxicity of Hg, Cd, Zn, Pb, As, Sb. Therapeutic Compounds: Vanadium-Based Diabetes Drugs; Platinum-Containing Anticancer Agents. Chelation therapy; Cancer treatment. Diagnostic Agents: Technetium Imaging Agents; Gadolinium MRI Imaging Agents. temperature and critical magnetic Field.	15
V	Enzymes -Introduction and properties -nomenclature and classification. Enzyme kinetics, free energy of activation and the effects of catalysis. Michelis - Menton equation - Effect of pH, temperature on enzyme reactions. Factors contributing to the efficiency of enzyme.	15
ı	Course Outcomes	
Course Outcom	I On completion of this course, stildents will be able.	
CO1	The students will be able to analyses trace elements.	
CO2	Students will be able to explain the biological redox systems.	
CO3	Students will gain skill in analyzing the toxicity in metals.	
CO4	Students will have experience in diagnosis.	

Learn about the nitrogen fixation and photosynthetic mechanism.

CO5

Text Books (Latest Editions)

- 1. Williams, D.R. Introdution to Bioinorganic chemistry.
- 2. F.M. Fiabre and D.R. Williams—The Principles of Bioinorganic Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
- 3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co., USA.
- 4. G.N. Mugherjea and Arabinda Das, Elements of BioinorganicChemistry 1993.
- 5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry, S. Chand, 2001.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery PublishingHouse, New Delhi (1996)
- 2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological processes, II Edition, Wiley London.
- 3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
- 4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
- 5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.

Web Resources

- 1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry- the-instant-notes-chemistry-series-d162097454.html
- 2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry- 5th-edition-d161563417.html

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	e Course	MATER	MATERIAL SCIENCE							
Category	EC - IV	Year	I	Credits	3	C	Course Code		232204207	
		Semeste	r II	Credits	3	C				
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
per week		4	1		5	25	75 100		100	
Prerequis	sites	Basic knowledge of solid-state chemistry								

- $\ensuremath{\mathscr{Z}}$ To understand the crystal structure, growth methods and X-rayscattering.
- ∠ To recognize the basis of semiconductors, superconductivity materials and magnets.

UNIT	Details	No. of Periods for the Unit
I	stallography: symmetry - unit cell and Miller indices -crystal systems - Bravais lattices - point groups and space groups - X-ray diffraction-Laue equations-Bragg's law-reciprocal lattice and its application to geometrical crystallography. Crystal structure—powder and single crystal applications. Electron charge density maps, neutrondiffraction-method and applications.	15
II	Crystal growth methods: Nucleation—equilibrium stability and metastable state. Single crystal —Low and high temperature, solution growth— Gel and sol-gel. Crystal growth methods—nucleation—equilibrium stability and metastable state. Single crystal—Low and high temperature, solution growth— Gel and sol-gel. Melt growth - Bridgeman—Stockbarger,Czochralski methods. Flux technique, physical and chemical vapour transport. Lorentz and polarization factor - primary and secondary extinctions.	15
III	Properties of crystals: Optical studies - Electromagnetic spectrum (qualitative) refractive index - reflectance - transparency, translucency and opacity. Types of luminescence - photo-, electro-, and injection luminescence, LEDs - organic, Inorganic and polymer LED materials - Applications. Dielectric studies- Polarisation - electronic, ionic, orientation, and space charge polarisation. Effect of temperature. dielectric constant, dielectric loss. Types of dielectric breakdown-intrinsic, thermal, discharge, electrochemical and defect breakdown	15
IV	Special Materials: Superconductivity: Meissner effect, Critical temperature and critical magnetic Field, Type I and II superconductors, BCS theory-Cooper pair, Applications. Soft and hard magnets – Domain theory Hysteresis Loop-Applications. Magneto and gian magneto resistance. Ferro, ferri and antiferromagnetic materials- applications, magnetic parameters for recording applications. Ferro-, Piezo-, and pyro electric materials – properties and applications. Shape memory Alloys-characteristics and applications, Non-linear optics- Second Harmonic Generators, mixing of Laser wavelengths by quartz, ruby and LiNbO ₃ .	15
V	Materials for Renewable Energy Conversion: Solar Cells: Organic, bilayer, bulk heterojunction, polymer, perovskite based. Solar energy conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells, coordination compounds anchored onto semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and splitting of water, CO2 and N2. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol.	15

	Course Outcomes								
Course	On completion of this course, students will be able;								
Outcomes									
CO1	To understand and recall the synthesis and characteristics of crystal structures,								
602	semiconductors, magnets, nanomaterials and renewable energy materials.								
CO2	To integrate and assess the structure of different materials and their properties.								
CO3	To analyse and identify new materials for energy applications.								
CO4	To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.								
CO5	To design and develop new materials with improved property for energy applications								

Text Books (Latest Editions)

- 01. S. Mohan and V. Arjunan, Principles of Materials Science, MJPPublishers, 2016.
- 02. Arumugam, Materials Science, Anuradha Publications, 2007.
- 03. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010
- 04. Woolfson, An Introduction to Crystallography, Cambridge UniversityPress, 2012.
- 05. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. Suggested Readings 1. M.G. Arora, Solid State Chemistry, AnmolPublications, New Delhi, 2001.
- 2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and CompanyLtd, 2001.
- 3. C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
- 4. H.P. Meyers, Introductory Solid State Physics, Viva Books PrivateLimited, 1998.
- 5. A.R. West, Solid State Chemistry and Applications, John-Wiley andsons, 1987.

Web Resources

- 1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
- 2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
- 3. https://bit.ly/3QyVg2R

Mapping with Programme Outcomes:

				P		dilline ,	o areoni.	C B.		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15

Weighted percentage of	3.0	2.0	2.0	3.0	3.0
Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	e Course	DRUGS AND COSMETICS							
Category	SEC - II	Year	I	I Credits		C	ourse	2	32204208
Category	SEC - II	Semeste	r II	Credits	2	C	ode	434444400	
	Instructional Hours		Tutorial	Lab Practice	Total	CIA	Extern	nal	Total
per week		3	ı		3	25	75		100
Prerequisites Basic knowledge of Drugs and Cosmetics in chemistry									

- ∠ To understand the briefly outlines the bacteria and virus, various synthetic methods of drugs.

- ∠ To learn the concepts of the components and chemicals used in the cosmetics.

UNIT	Details	No. of Periods for the Unit
I	DRUGS, BACTERIA AND VIRUS:	0220
	Significance of drugs - lethal dosage - bacteria - types of bacteria -	9
	gram positive - gram negative - examples - viruses - differences	9
	between bacteria and virus - fungi - drawbacks of drugs.	
II	ANALGESICS, ANTIPYRETICS AND VITAMINS	
	Analgesics - types - narcotic and non-narcotic analgesics - salicylate	
	- ibuprofen (structure not necessary) antipyretics - paracetamol	9
	(structure not necessary). Vitamins - types - functions of A, B6, B12, C,	
	D, E vitamins only (structure not necessary).	
III	ANTIBIOTICS AND ANTIMALARIAL DRUGS	
	Antibiotics - types - tetracycline - rifomycin only (structure not	9
	necessary) - mechanism of drug action (PABA) - antimalarial drugs -	9
	quinine only (structure not necessary).	
IV	WASHING AND CLEANING POWDER, PHENOYLS	
	Preparation of washing powder - cleaning powder - white, black,	9
	yellow coloured phenoyls.	
V	COSMETICS, SHAMPOO AND FACEPOWDER	
	Characteristics of good cosmetics - demerits of artificial cosmetics -	9
	preparation shampoo, bathing soap, basic composition of face powder.	

	Course Outcomes								
Course Outcomes	On completion of this course, students will be able;								
CO1	To recall the basic principles of the briefly outlines the bacteria and virus, various synthetic methods of drugs.								
CO2	To understand the deals with miscellaneous applications drugs and its types.								
CO3	To learn about various therapeutic action of drugs								
CO4	To learn the concepts of the components and chemicals used in the cosmetics.								
CO5	To know about assorted applications of cosmetics.								

Text Books (Latest Editions)

- 1. Pharmaceutical Chemistry Lakshmi
- 2. Medicinal Chemistry Gurdeep R. Chatwal

3. Textbook of cosmetics – Rajesh Kumar Nema, Kamal Singh Rathore, Balkrishna Dubey.

References Books

 $(Latest\ editions,\ and\ the\ style\ as\ given\ below\ must\ be\ strictly\ adhered\ to)$

Medicinal Chemistry - Albert Burger

Mapping with Programme Outcomes:

					-					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course		FOOD PRESERVATION							
Cotogowy	AECC - II	Year	I	Credits	2	C	ourse	232204209	
Category		Semeste	r II	Credits	2	C	Code		232204209
Instruction per week	Instructional Hours		Tutorial	Lab Practice	Total	CIA	Extern	nal	Total
per week		2	ı		2	25	75		100
Prerequi	sites	Basic knowledge of food processing and preservation							

- ✓ To also deals with food preservation in industry.
- ✓ To learn the concepts of the Sea and meat and egg products.
- ✓ To know about assorted food quality and sensory evaluation of products.

UNIT	Details	No. of Periods for the Unit	
I	Food Processing:		
	Aims of food science and technology – Constituents of food, food as a source of energy. Preparative operations in food industry - cleaning, sorting and grading of food raw materials.	6	
II	Food Preservation:		
	Commercial heat preservation methods - sterilization, pasteurization and Balancing - Evaporation and drying – Types of evaporators, Types of driers. Low–temperature food processing and preservation methods – Refrigeration and cold storage only.	6	
III	Milk and Dairy Products Preservation:		
	Milk production and quality control milk processing operations. Types of milk and milk products – Butter making – Manufacture of ice cream.	6	
IV	(a) Vegetables and Fruits and their Products Preservation:		
	Storage of vegetables, vegetable products, storage of fruits, fruit		
	products, fruit juice production.	6	
	(b) Meat, Sea Food and Eggs Preservation:		
	Types of meat, preservation, cooking of meat, storage and processing of		
	fish and fish products. Egg and Egg products.		
\mathbf{V}	Food Quality:		
	Sensory Evaluation of Food Quality - Appearance factors - Textural	6	
	factors - Flavour factors - Quality factors for consumer safety -		
	Nutritional quality - Sanitary Quality - Food Safety standards.		

Course Outcomes						
Course Outcomes	On completion of this course, students will be able;					
CO1	To understand the briefly briefly outlines the food processing method.					
CO2	To also deals with food preservation in industry.					
CO3	To learn about various food products of dairy and milk products.					
CO4	To learn the concepts of the Sea and meat and egg products.					
CO5	To know about assorted food quality and sensory evaluation of products.					

Text Books (Latest Editions)

- 1. Varzakas. T., Tzia. C., Handbook of Food Processing: Food Preservation, 2nd Edition, CRS Press, Delhi, 2015.
- 2. ShakuntalManay. N., Food Facts and Principles, AA Press, Delhi, 2008.
- 3. Desukumar., Outline of Dairy Technology, 2nd Edition, CBS Publication, Delhi, 2001.
- 4. Hui. H.Y., Ozgul.E., Handbook of Vegetable Preservation and Processing, 2nd Edition,

- CRS Press, Nov. 2015.
- 5. Huang. Y., Whittakers.D.A., Lacey. R.E., Automation for Food Engineering, Food Quality, Quantization and Process Control, 1st Edition, CRC Press, 2001.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. Siva Sankar B., Food Processing and Preservation, Prentice Hall of India Private Limited.
- 2. Srivastava., Fruit Vegetable Preservation, Principles and Practices, CRS Press, 2014.
- 3. Varzakas.T., Tzia.C., Handbook of Food Processing: Food Safety, Quality and Manufacturing Processes, CRC Press, 2015.

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	M	S	S	S	S	M
CO2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO4	M	S	S	S	S	M	S	S	S	S
CO5	M	S	M	S	S	M	S	M	S	S

3-Strong, 2-Medium, 1-Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0